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Abstract Recent observations of reflected propagating and standing slow-mode
waves in hot flaring coronal loops have spurred our investigation into their un-
derlying excitation and damping mechanisms. To understand these processes, we
conduct 2.5D magnetohydrodynamic (MHD) simulations using an arcade active
region model that includes a hot and dense loop. Our simulations allow for in-
depth parametric investigations complementing and expanding our previous 3D
MHD modeling results. We excite these waves using a large-amplitude, flow pulse
applied at one footpoint of the loop in two distinct models as motivated by obser-
vations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly
(SDO/AIA). The first model (Model 1) incorporates classical compressive vis-
cosity coefficient, while the second model (Model 2) adopts a 10-times enhanced
viscosity coefficient. We obtain the following major results: (1) Our 2.5D MHD
simulations reinforce previous conclusions derived from 1D and 3D MHD models
that significantly enhanced viscosity is crucial for the rapid excitation of standing
slow waves with damping times consistent with observations by Wang et al.
(2015). (2) We uncover that nonlinearity in Model 1 delays the conversion of a
reflected propagating wave into a standing wave. In contrast, Model 2 exhibits
a much weak influence of nonlinearity on the excitation time of standing waves,
thanks to the suppression of these effects by enhanced viscosity. (3) Our results
reveal that the transverse temperature structure holds more influence on wave
behavior than the density structure. In Model 1, increased loop temperature
contrast significantly enhances wave trapping within the structure, mitigating
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the impact of temperature-dependent viscous damping. Conversely, in Model 2,
the impact of temperature structure on wave behavior weakens in comparison to
the effect of viscosity. (4) Model 1 displays evident nonlinear coupling to the fast
and kink magnetoacoustic waves and pronounced wave leakage into the corona.
Model 2 exhibits significantly weaker effects in this regard. Analyzing three
observed wave events by SDO/AIA aligns with Model 2 predictions, providing
further support for the substantial viscosity increase. Our 2.5D study unravels
the complex interplay of wave-flow phenomena and nonlinear processes in coronal
loops, extending our previous 1D modeling results to incorporate more realistic
loop geometry. This provides insights into scenarios where 3D effects may be
neglected, thereby enhancing our understanding of the intricate dynamics of the
solar corona.

Keywords: Flares, dynamics · Oscillations and waves, MHD · Magnetic field,
corona

1. Introduction

The phenomenon of slow magnetoacoustic waves in hot loops of active region
(AR) coronae has been an active research topic in observation and theory since
its discovery (see reviews by Wang, 2011; Wang et al., 2021). This is because,
through a technique known as coronal seismology (e.g., reviews by Nakariakov
and Verwichte, 2005;Wang, 2016; Nakariakov and Kolotkov, 2020), important in-
formation about the coronal (loop) structure can be extracted from the observed
wave properties, which would otherwise be impossible or challenging to obtain.
This information includes the magnetic-field strength (Wang, Innes, and Qiu,
2007; Nisticò et al., 2017), transport coefficients (Wang et al., 2015; Wang and
Ofman, 2019; Kolotkov, 2022), heating functions (Reale et al., 2019; Kolotkov,
Duckenfield, and Nakariakov, 2020; Kolotkov and Nakariakov, 2022), and the
potential role of slow wave dissipation in coronal heating (Xia et al., 2022).

Impulsively-generated Doppler velocity oscillations were first discovered by
the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emit-
ted Radiation (SOHO/SUMER) spectrometer in flare emission lines, mainly
Fexix and Fexxi, with formation temperatures above 6 MK (e.g., Wang et al.,
2002, 2003a; Wang, Innes, and Qiu, 2007). These oscillations were mostly in-
terpreted as the fundamental standing slow-mode waves based on the measured
phase speed, close to the sound speed at the loop’s temperature, and the pres-
ence of a quarter-period phase shift between velocity and intensity disturbances
(e.g., Ofman and Wang, 2002; Wang et al., 2003b). Similar Doppler velocity
oscillations detected in the Sxv and Caxix lines by Yohkoh/Bragg Crystal
Spectrometer (Yohkoh/BCS) were also interpreted as the standing slow-mode
waves (Mariska, 2005, 2006).

The launch of SDO has led to the discovery of longitudinal intensity oscilla-
tions by AIA in high-temperature EUV emission channels (94 Å of 7 MK and
131 Å of 11 MK), characterized by apparent sloshing motions of the disturbance
between the two footpoints of a hot flaring loop (Kumar, Innes, and Inhester,
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2013; Wang et al., 2015). Similar intensity oscillations were also observed in hot
loops by Hinode/X-Ray Telescope (Hinode/XRT) (Mandal et al., 2016). The
longitudinal oscillations from imaging observations, showing wave and plasma
properties consistent with those of the SUMER oscillations, have been mostly
interpreted as the slow-mode waves in a reflected propagating mode (Kumar,
Innes, and Inhester, 2013; Kumar, Nakariakov, and Cho, 2015; Fang et al., 2015;
Mandal et al., 2016; Nisticò et al., 2017; Xia et al., 2022). However, evidence
for a transition from an initial reflected propagating wave into the standing
wave pattern has been revealed during the loop-cooling phase (Krishna Prasad
and Van Doorsselaere, 2021). In contrast, Wang et al. (2015) detected one case
showing that the initial disturbance quickly forms a standing wave after only one
reflection, in agreement with what was detected by SUMER (e.g., Wang et al.,
2003b).

Both standing and reflected propagating slow-mode waves in hot coronal loops
are observed to decay quickly, typically lasting for a couple of periods (e.g., Wang
et al., 2021). Statistical studies have shown that the measured decay times and
wave periods are comparable and follow a near-linear scaling relationship (Wang
et al., 2003a, 2005; Mariska, 2006; Nakariakov et al., 2019). Thermal conduction
was suggested to be the dominant damping mechanism for slow waves in typical
hot coronal loops, based on linear theories (De Moortel and Hood, 2003; Pandey
and Dwivedi, 2006; Prasad, Srivastava, and Wang, 2021) and nonlinear MHD
simulations (Ofman and Wang, 2002; Mendoza-Briceño, Erdélyi, and Sigalotti,
2004; Bradshaw and Erdélyi, 2008; Fang et al., 2015). Many other damping
mechanisms have been proposed, including nonlinearity effects (Verwichte et al.,
2008; Ruderman, 2013), wave leakage into the corona due to curvature and
mode coupling (Selwa, Ofman, and Murawski, 2007; Ogrodowczyk, Murawski,
and Solanki, 2009; Ofman, Wang, and Davila, 2012), and wave-caused heating-
cooling misbalance (Kumar, Nakariakov, and Moon, 2016; Nakariakov et al.,
2017; Kolotkov, Nakariakov, and Zavershinskii, 2019). The near-linear scaling
between damping times and oscillation periods was interpreted as the combined
effect of thermal conduction and compressive viscosity (Ofman and Wang, 2002;
Wang et al., 2021).

Prasad, Srivastava, and Wang (2021) demonstrated that by considering the
joint effect of thermal conduction, compressive viscosity, and heating-cooling
misbalance, the theoretically predicted values of damping time and wave period
can be fitted to a function composed of two power-law scalings (corresponding to
short- and long-period domains, respectively), which better matches the SUMER
observations. From the linear theory, including effects of wave-induced thermal
misbalance, Kolotkov and Nakariakov (2022) derived a new relationship between
damping time and wave period, which suggests a more generic seismological
technique to constrain the coronal heating function.

The rapid excitation of standing slow-mode waves in hot coronal loops is a
challenging problem that has attracted many theoretical studies (Wang et al.,
2021). Observations indicate that both SUMER and AIA loop oscillations are
mostly triggered by small- or micro-flares at one footpoint of a hot loop sys-
tem. Various MHD models have shown that impulsive heating typically excites
the reflected propagating slow-mode waves (also called sloshing oscillations),
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which undergo several reflections between two footpoints of the loop to form
a standing wave (Selwa, Murawski, and Solanki, 2005; Taroyan et al., 2005;
Ogrodowczyk and Murawski, 2007; Ogrodowczyk, Murawski, and Solanki, 2009;
Fang et al., 2015; Reale, 2016; Wang et al., 2018; Ofman and Wang, 2022).
Strongly asymmetric heating (i.e., at one footpoint) favors the formation of the
fundamental mode, while symmetric heating results in the second harmonic (e.g.,
Selwa, Murawski, and Solanki, 2005).

To address the issue of rapid excitation (within about one oscillation period) of
the fundamental standing slow-mode wave by single footpoint heating, various
mechanisms have been proposed: (1) launching a long pulse with a duration
comparable to the wave period using the 1D HD model (Taroyan et al., 2005,
2007); (2) launching a broad velocity pulse at one footpoint of a curved loop that
leads to the interaction of a primary perturbation propagating inside the loop
with a second slow pulse excited at the remote footpoint by the external fast
wave using 2D and 3D modeling (Selwa, Ofman, and Murawski, 2007; Selwa
and Ofman, 2009); (3) injecting a steady flow or flow pulse into the loop to
excite the slow waves that can quickly form the standing mode due to significant
wave leakage into the corona related to coupling with fast-mode waves using a
3D resistive MHD model (Ofman, Wang, and Davila, 2012; Ofman and Wang,
2022); (4) significantly enhanced compressive viscosity that leads to efficient
dissipation of high-frequency components in a flow pulse based on a nonlinear
1D MHD model (Wang et al., 2018; Wang and Ofman, 2019).

Specifically, the work by Selwa and Ofman (2009) delves into the excitation
and damping of slow standing waves within a dense loop, using a 3D resistive
MHD model in an isothermal atmosphere while neglecting viscosity and gravity.
They arrived at a similar conclusion to that of Selwa, Ofman, and Murawski
(2007), yet they observed a distinct phenomenon: the excitation of slow standing
waves through a footpoint pulse becomes more efficient in the 3D case compared
to the 2D case, primarily due to the heightened effectiveness of wave leakage out
of the loop in a 3D geometry. One notable factor contributing to this pronounced
wave leakage is the presence of plasma-β exceeding 1 at the loop’s apex within
their model conditions, a condition that likely happens in hot and dense postflare
loops. Nevertheless, measurements by Wang, Innes, and Qiu (2007) showed that
the typical values of plasma-β in hot oscillating loops remain on the order of 0.1.

Ofman, Wang, and Davila (2012) studied impulsively generated waves and
flows in hot coronal loops using 3D MHD modeling in the isothermal case with-
out considering a pre-existing density structure, and found that the impulsive
onset of steady flows can excite damped magnetoacoustic waves that initially
propagate along the loop and form a standing wave quickly. They suggested that
the quick damping and fast formation of standing waves could be attributed to
large wave leakage due to nonlinear coupling of slow waves with fast-mode waves.
Ofman and Wang (2022) studied the excitation and damping of slow-mode waves
in a hot and dense coronal loop using a 3D MHD model including the effects of
compressive viscosity along the magnetic field. They found that there is a small
effect of viscosity dissipation in a 6 MK hot loop in the warm (2 MK) coronal
background compared to significant wave leakage due to mode coupling, whereas
the more effects of viscous dissipation in hotter (∼10 MK) coronal loops in the
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hot (7 MK) coronal background. It needs to be pointed out that the initial hot

and dense loop is not exactly in a stable equilibrium in their modeling. The

gradual evolution of the loop in transverse structure may increase the leakage of

waves into the corona.

By analyzing an AIA loop oscillation event, Wang et al. (2015) found evi-

dence for the suppression of thermal conduction, supported by the near-inphase

relationship between temperature and density variations and the measured poly-

tropic index having a value close to 5/3. They also suggested that classical

compressive viscosity needs to be enhanced by an order of magnitude to account

for the rapid decay of observed waves. In a study by Prasad et al. (2022), the

role of non-ideal dissipation in the phase shift and polytropic index of standing

slow waves was investigated based on linear theory. The results showed that,

with consideration of thermal misbalance, the conclusion of suppressed thermal

conduction and enhanced viscosity obtained in Wang et al. (2015) remains valid.

Further research by Wang and Ofman (2019) involved numerical parametric

studies to refine the values of transport coefficients determined in Wang et al.

(2015). Additionally, Wang et al. (2018) utilized 1D nonlinear MHD simulations

to study the role of modified transport coefficients in the excitation of stand-

ing slow waves. They demonstrated that the model with seismology-determined

transport coefficients can self-consistently produce the standing slow mode wave

as quickly (within one period) as observed, In contrast, the model with classical

transport coefficients produces an initial reflected propagating wave that requires

many footpoint reflections to form a standing wave.

Recently, Ofman and Wang (2022) investigated the excitation and damping

of slow waves in hot coronal loops using nonlinear 3D MHD models featuring

a bipolar magnetic geometry. They showed the significant role of wave leakage

in inducing damping, despite the enhanced trapping effect brought about by

the transverse temperature structure within the loop. Nevertheless, their anal-

yses remained qualitative, constrained by the inherent limitations of 3D MHD

modeling in terms of computational accuracy and expense.

In this study, we employ a 2.5D arcade loop model to explore the influence of

modified transport coefficients on the excitation of the slow-mode wave and the

impact of transverse structuring in temperature and density within the loop on

the phenomena of wave trapping/leakage. Utilizing 2.5D MHD models affords

us the opportunity to conduct numerous long-duration numerical simulations

characterized by high resolutions and low computational costs, enabling a thor-

ough parametric investigation without sacrificing generality compared to 3D

counterparts. Section 2 outlines the numerical model, initial setup, and boundary

conditions. Section 3 presents the modeling results and quantitative analyses of

the effects of enhanced compressive viscosity, as well as other factors including

thermal conduction, nonlinearity, and transverse structuring on wave damping.

Comparisons of the simulations with some observed events regarding mode cou-

pling and wave leakage are also included in this section. Finally, we provide the

discussion and conclusions in Section 4.
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2. 2.5D Hot Arcade Loop Modeling

2.1. MHD Model

To model plasma dynamics in a 2.5D arcade active region we solve the nonlinear,
resistive 3D MHD equations using a 3D code NLRAT (run in 2D mode). The
simulation includes effects of gravity, compressive viscosity, heat conduction, and
optically thin radiation (see Provornikova, Ofman, and Wang, 2018; Ofman and
Liu, 2018; Ofman and Wang, 2022, in detail). The MHD equations are presented
in a flux-conservative and dimensionless form:

∂ρ

∂t
+∇ · (ρV ) = 0, (1)

∂(ρV )

∂t
+∇ ·

[

ρV V +

(

Eu p+
B ·B

2

)

I −BB

]

=
1

Fr
ρFg + Fv, (2)

∂(ρE)

∂t
+∇·

[

V

(

ρE + Eu p+
B ·B

2

)

−B(B · V ) +
1

S
∇×B ×B + V ·Π

]

=
1

Fr
ρFg · V +∇‖(κ‖∇‖T )−Qrad +Hin, (3)

∂B

∂t
= ∇× (V ×B) +

1

S
∇2

B. (4)

In the above equations, the total energy density is represented as ρE = Eup
(γ−1) +

ρV 2

2 +B2

2 , where p, ρ, V , and B correspond to the dimensionless pressure, density,
velocity, and magnetic field, respectively. The gravity term is denoted as Fg =
− 1

(10+z−zmin)2
ez, the gradient parallel to the magnetic field is defined as ∇‖ =

1
|B|B ·∇ and is considered as a scalar operator. The B-parallel heat conductivity

is given by κ‖ = 7.8 × 10−7T 5/2 erg cm−1s−1K−1 based on Spitzer and Härm
(1953).

The viscous stress tensor is denoted as Π, and the viscous force is represented
as Fv = −∇·Π. Additionally, a term on the left-hand side of the energy equation,
denoted as Sv = −∇ · (V · Π), represents the total energy flux transferred by
viscous forces (see Equation 6.33 in Braginskii, 1965). This term is crucial for
understanding the energy dissipation and transfer processes due to viscosity
in the plasma. Sv can be decomposed into two parts: the volumetric heating
rate (Qv = −Π · ∇V ) due to viscous dissipation and the rate of work done
(Wv = V · Fv) by the viscous forces on the plasma. The presence of viscous
effects can have significant implications for the dynamics and energetics of the
coronal plasma, particularly in conditions where the magnetic field is strong
(e.g., in active region loops) and the viscosity becomes highly nonisotropic. The
dominant terms in the viscous stress tensor, corresponding to the compressive
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viscosity, can be expressed as follows (Braginskii, 1965; Hollweg, 1986; Craig and
Litvinenko, 2007),

Πij = 3η0

(

δij
3

−
BiBj

B2

)(

B ·B · ∇V

B2
−

∇ · V

3

)

, (5)

where η0 = 10−16T 5/2 g cm−1s−1 is the Braginskii compressive viscosity co-
efficient. From Equation 5, it follows that the viscous heating rate is positive
definite and given by Qv = 3η0(B

−2
B ·B ·∇V −∇·V /3)2 (see Hollweg, 1986).

In the 1D case with B = Bz, this simplifies to Qv = (4/3)η0(∂Vz/∂z)
2. In

a strongly magnetized plasma, viscous heating refers to an irreversible process
where the energy of the plasma is converted into internal energy (heat) due
to the action of anisotropic viscous forces. On the other hand, the term Wv

can either add mechanical energy to the plasma (positive work) or dissipate its
kinetic energy into other forms (negative work). The net effect depends on the
relative orientation of the viscous force and velocity vector.

In the present study, we omit the radiative loss term Qrad and the empirical
heating function Hin, which is often employed to balance the radiative cooling.
Instead, we adopt an empirical polytropic index value of γ=1.05 (e.g. Linker
et al., 1999). This choice reduces the impact of the source terms in the energy
equation, as the plasma is nearly isothermal with an empirical value of γ close
to unity.

The normalization of the MHD equations results in the dimensionless parame-
ters: the Euler number Eu = 4πp0/B

2
0 = C2

s0/(γV
2
A0) = β0/2, the Froude number

Fr = V 2
A0L0/(GMs), and the Lundquist number S = L0VA0/η. Here, L0 repre-

sents the length scale defined as L0 = 0.1Rs (where Rs is the solar radius), B0

is the normalizing magnetic field magnitude, ρ0 is the normalizing density, and
p0 is the normalizing pressure in the corona. Additionally, VA0 = B0/(4πρ0)

1/2

is the normalizing Alfvén speed, Cs0 = (γp0/ρ0)
1/2 is the characteristic sound

speed, G denotes the gravitational constant, Ms represents the solar mass, and
η is the resistivity.

The physical parameters used in the present model are summarized in Ta-
ble 1. We have set S = 104 in this study, which implies that the resistivity in
the model is much higher than solar resistivity due to numerical limitations.
However, despite this choice, the resistivity has a negligible effect on the slow
magnetoacoustic waves.

2.2. Initial Setup

A coronal arcade model in Cartesian geometry is initialized with the potential
magnetic field, as described in numerous previous studies (e.g., Oliver et al., 1993;
Selwa, Murawski, and Solanki, 2005; Selwa, Ofman, and Murawski, 2007). In this
model, the magnetic field components in dimensionless form are represented as
follows:

Bx = −cos(x/ΛB)e
−(z−zmin)/ΛB , (6)

By = 0, (7)

Bz = sin(x/ΛB)e
−(z−zmin)/ΛB , (8)
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Table 1. Physical parameters used in the model.

Quantities Values Quantities Values

Length scale (L0) 0.1Rs Loop length (L) 187±54 Mm

Magnetic field (B0) 100 G Loop width (w) 10 Mm

Temperature (T0) 7 MK Pulse amplitude (A0) 0.1 or 0.01

Number density (n0) 109 cm−3 Pulse duration (∆t) 30 τA
Alfvén speed (VA0) 6898 km s−1 κ‖(T0) 1.01×1011 erg (cm sK)−1

Alfvén time (τA) 10.1 s η0(T0) 12.9 g (cm s)−1

Sound speed (Cs0) 348 km s−1 Plasma-β0 0.0049

Grav. scale height (H0) 427 Mm Polytropic index (γ) 1.05

Euler number (Eu) 2.43× 10−3 Froude number (Fr) 25.1

Table 2. Parameters used in the two types of numerical models for the various cases. Model
1 employs the classical values (ηc) of the compressive viscosity coefficient η0, while model 2
uses the ten times enhanced values (10ηc). Cases #A-F are the control numerical experiments
that differ from case # only in one parameter, where # represents model 1 or 2. The classical
values of the B-parallel thermal conductivity κ‖ are denoted as κc. The loop density and
temperature contrasts at the footpoint are represented by χρ and χT , respectively. A0 is the
normalized injection velocity amplitude. The term Sv is assigned the value ‘Y’ (‘N’) to indicate
the inclusion (exclusion) of the viscous term in the energy equation.

Case η0 κ‖ χρ χT A0 Sv Case η0 κ‖ χρ χT A0 Sv

1 ηc κc 1.5 1.5 0.1 Y 2 10ηc κc 1.5 1.5 0.1 Y

1A ηc 0 1.5 1.5 0.1 Y 2A 10ηc 0 1.5 1.5 0.1 Y

1B ηc κc 1.5 1.5 0.01 Y 2B 10ηc κc 1.5 1.5 0.01 Y

1C ηc κc 1.0 1.5 0.1 Y 2C 10ηc κc 1.0 1.5 0.1 Y

1D ηc κc 1.5 1.0 0.1 Y 2D 10ηc κc 1.5 1.0 0.1 Y

1E ηc κc 1.5 2.0 0.1 Y 2E 10ηc κc 1.5 2.0 0.1 Y

1F ηc κc 1.5 1.5 0.1 N 2F 10ηc κc 1.5 1.5 0.1 N

where ΛB = 2Lw/π represents the magnetic scale height, with Lw denoting the
half-width of the arcade (for which we take Lw = 1.43 in this study). It is evident
that the normalizing magnetic field B0 corresponds to the field strength at the
level z = zmin. Assuming ρt=0 ≡ ρ(t = 0, x, z) and Tt=0 ≡ T (t = 0, x, z) as the
initial normalized equilibrium density and temperature in a 2.5D domain, the
gravitationally stratified density and temperature in the polytropic atmosphere
are given by:

ρt=0 =

[

1 +
(γ − 1)

γH

(

1

10 + z − zmin
−

1

10

)]1/(γ−1)

, (9)

Tt=0 = ργ−1
t=0 . (10)

Here, H = EuFr = 2kBL0T0/(mpGM) denotes the normalized gravitational
scale height, with kB being Boltzmann constant, and mp represents the proton
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Figure 1. Initial configuration of a 2D arcade loop model in polytropic equilibrium. (a)
Density distribution (ρ(0); color scale in units of n0mp, where n0 = 109 cm−3 and mp is
the proton mass). (b) Temperature distribution (T (0); color scale in units of T0=7 MK). (c)
Plasma β, overlaid with the contours (dashed lines) showing the values of β=0.01, 0.03, 0.06,
0.12, 0.25. (d) Local Alfvén speed (VA; color scale in units of VA0=6898 km s−1), overlaid
with the contours (dashed lines) showing the levels of VA=0.2, 0.4, 0.6, 0.8. White solid curves
in each panel depict magnetic field lines for a potential field model. In panel (a), a black curve
indicates a cut along the loop model used to generate time distance plots presented in Figure 4,
and a white vertical line indicates a cut across the loop’s apex used to generate time distance
plots presented in Figure 16.

mass. The hydrostatic density scale height at the solar surfaceH0 = (R2
s/L0)H =

100HL0 (assuming that (z − zmin) ≪ Rs).

We position a hot loop within the coronal arcade, with its edges following

magnetic field lines, and one footpoint centered at (x0,z0)=(1, 1) with a radius

(i.e., loop half width in the 2D model) to be r0 = 0.12. The loop is character-

ized by having larger density and temperature inside than outside, with a peak

density ratio χρ = ρin/ρex and a peak temperature ratio χT = Tin/Tex, where

the subscript ‘in’ refers to the interior of the loop and ‘ex’ refers to its external

surroundings). The temperature and density within the loop’s cross section at

the footpoint (x0,z0) are initialized with Gaussian profiles, given by

ρft(r) = (χρ − 1)
(

e−(2r/r0)
2

− c0

)

/(1− c0) + 1, (11)

Tft(r) = (χT − 1)
(

e−(2r/r0)
2

− c0

)

/(1− c0) + 1. (12)
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Here, r = |x − x0| ≤ r0 and the constant c0 = e−4 is chosen to match the
loop’s boundary to the background corona. By considering ρt=0(r) and Tt=0(r)
as the density and temperature at a point (x,z) along a field line that has the
radial distance r at the footpoint relative to (x0,z0), the loop’s initial polytropic
density and temperature satisfying the gravitational equilibrium are given by:

ρt=0(x, z, r) =

[

ργ−1
ft (r) +

1

cr

(γ − 1)

γH

(

1

10 + z − zmin
−

1

10

)]1/(γ−1)

, (13)

Tt=0(x, z, r) = crρ
γ−1
t=0 (x, z, r). (14)

Here, cr = Tft(r)/ρ
γ−1
ft (r). This setting for the initial density and temperature

distributions ensures that the density and temperature along the same field line
within the loop have the approximately same contrast to the background corona.
When χρ = 1 and χT = 1, Equations 13 and 14 reduce to Equations 9 and 10,
respectively. We also discuss the following two cases:

1) In the case where χρ > 1 and χT = 1, the following relationships can be
derived:

ρloopt=0 = ρft

[

1 +
(γ − 1)

γH

(

1

10 + z − zmin
−

1

10

)]1/(γ−1)

= ρft(r)ρ
bg
t=0, (15)

T loop
t=0 = 1 +

(γ − 1)

γH

(

1

10 + z − zmin
−

1

10

)

= T bg
t=0, (16)

where ρloopt=0 and T loop
t=0 represent the initial density and temperature distributions

for the loop, while ρbgt=0 and T bg
t=0 represent those for the background (Equations

9 and 10). This implies that the loop exhibits a density contrast of ρft(r) relative
to the background corona throughout the loop, while there is no temperature
contrast. This loop model resembles the isothermal case (Selwa and Ofman,
2009).

2) In the case where χρ = 1 and χT > 1, the following relationships can be
derived:

ρloopt=0 =

[

1 +
(γ − 1)

γHTft(r)

(

1

10 + z − zmin
−

1

10

)]1/(γ−1)

(17)

≈ 1−
0.01∆z

γHTft(r)
, (18)

T loop
t=0 = Tft(r) +

(γ − 1)

γH

(

1

10 + z − zmin
−

1

10

)

(19)

≈ Tft(r) −
(γ − 1)

γH
(0.01∆z), (20)

where ∆z = z− zmin. For ∆z = 0 at the footpoint and ∆z = 0.72 at the apex of
the loop, we estimate the ratios of ρloopt=0 and ρbgt=0 to be 1 and 1.04, respectively.

Moreover, we estimate T loop
t=0 /T bg

t=0 ≈ Tft(r) considering that 0.01∆z(γ − 1) ≪ 1
for γ = 1.05. This suggests that the loop model displays a temperature contrast
of approximately Tft(r) compared to the background corona throughout the loop.
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Meanwhile, a very subtle density contrast (. 4%) arises due to the larger scale
height TftH in comparison to the background corona.

With the above setting, the loop’s footpoint diameter measures 10 Mm at the
coronal base (measured as the FWHM of the cross sectional density profile), and
the loop length, L, is approximately 178 Mm, measured from a cut along the loop
axis (see Figure 1(a)). Guided by AIA observations in Wang et al. (2015), we take
T0 = 7 MK and n0 = 109 cm−3 with χT = 1.5 and χρ=1.5 in this study, resulting
in the initial maximum temperature, Tmax, being 10.5 MK, and the maximum
density, ρmax, being 1.5 × 109 cm−3 in the hot loop model. Figure 1 depicts
the initial state of the coronal loop in the arcade magnetic field, encompassing
density in Panel (a), temperature in Panel (b), plasma-β represented as β(x, z) =
β0(ρT/B

2) in Panel (c), and local Alfvén speed VA(x, z) = VA0(B/ρ1/2) in Panel
(d). We observe that the values of β outside the loop increase with heights (from
0.0049 at the lower boundary to 0.69 at the upper boundary) while uniform
along the x-direction in this arcade model. Within the loop, where T ≥ 1, the
plasma-β is slightly larger compared to the exterior but remains lower overall,
ranging from 0.0049 to 0.05. This range aligns with typical coronal conditions
as observed.

The equations are solved in a 2.5D computational domain of size (−2.4, 2.4)×
(1, 3.4), using normalized distance units and a uniform grid of 514× 514 points.
This resolution is verified to be adequate for the model through a convergence
test using a higher resolution grid of 1026 × 1026. To run the 3D model in 2D
mode, we keep 3 grid cells in the (y) direction perpendicular to the (xz) plane.
The numerical method employed is the modified Lax-Wendroff method with a
fourth-order stabilization term (e.g. Ofman and Thompson, 2002).

It should be noted that the above initial state, including a dense and hot
loop, is not an exact stable equilibrium, as the transverse pressure gradient in
the loop is not balanced by magnetic pressure in the initial state. However, since
the coronal loop is magnetically dominated, characterized by a low-β condition,
the departure from equilibrium is small. The relaxation process excites fast
magnetoacoustic waves that propagate out of the domain after t = 10τA. The
relaxation also excites weak second harmonic slow-mode waves in the coronal
loop (see Figure 9(a)), with a maximum velocity amplitude less than 2 km s−1

before we launch a flow pulse at t = 60τA. This amplitude is about 200 times
(10 times) smaller than that in Case 1 (Case 1B). Thus, its influence on our
simulation results can be neglected.

2.3. Boundary Conditions

The boundary conditions in the 2.5D computational domain are open on all
external planes except for the bottom boundary located at the coronal base
z = zmin. At this lower boundary, the perturbed magnetic fields, temperature,
and velocities are set to be zero, while the density is extrapolated from the values
obtained at the interior points. To excite the slow magnetoacoustic waves, a
velocity pulse is impulsively injected at the right footpoint of the coronal loop
model (centered at x0=1 in the area r = |x − x0| ≤ 2wv=0.06, i.e., within
the loop’s cross section at z = zmin). A similar method has been applied in
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previous studies (Wang, Ofman, and Davila, 2013; Provornikova, Ofman, and
Wang, 2018; Ofman andWang, 2022). The injected velocity is along the magnetic
field direction and given by:

V = V0(x, zmin, t)
B

|B|
, (21)

where the dimensionless velocity V0 is given by:

V0(x, z = zmin, t) = Av(t) exp

[

−

(

r

wv

)4
]

. (22)

Here, Av(t) sets the time profile of a single pulse as:

Av(t) =

{

A0

[

1
2

(

1− cos 2π(t−t1)
∆t

)]

for t1 ≤ t ≤ t2,

0 otherwise,
(23)

with the time interval between t1 = 60τA and t2 = 90τA, and the magnitude
A0=0.1, approximately 2 times Cs0. The pulse duration is chosen to be ∆t =
30τA, which is much shorter than the anticipated slow-mode wave period in the
loop, as guided by observations (Wang et al., 2005, 2018).

A similar condition is applied for the dimensionless temperature perturbation
∆T :

∆T (x, zmin, t) = AT (t) exp

[

−

(

r

wv

)4
]

(r ≤ 2wv), (24)

where the function AT (t) is based on the relationship, ∆T
T0

= (γ − 1) V
Cs

, derived
from linearized ideal MHD theory:

AT (t) =

{

(γ−1)VA0

Cs0
Av(t) for t1 ≤ t ≤ t2,

0 otherwise.
(25)

Based on the values of VA0 and Cs0 provided in Table 1, it is estimated that
AT (t) ≈ Av(t) in normalized units. This implies that the maximum amplitude in
the temperature pulse is about 0.1T0 for the case of A0=0.1. Outside the pulse
source region (r > 2wv), we set the velocity and temperature perturbations to
zero at z = zmin.

3. Results

Motivated by observational analyses of slow-mode waves in a hot flaring loop in
Wang et al. (2015) and previous 1D MHD modeling (Wang et al., 2018; Wang
and Ofman, 2019) and 3D MHD modeling (Ofman and Wang, 2022), our main
focus is on comparing two types of models using 2.5D MHD simulations of an
arcade AR initiated with a hot (χT = 1.5) and dense (χρ = 1.5) coronal loop.
Model 1 incorporates the classical thermal conduction coefficient (κ‖ = κc) and
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Figure 2. Snapshots of relative perturbed density (∆ρ/ρ(0) = (ρ(t)−ρ(0))/ρ(0)) and velocity
in the xz-plane for Model 1 with classical thermal conduction and compressive viscosity coef-
ficients. (a) and (b): density distributions at t = 87τA and 120τA. (c) and (d): Corresponding
velocity distributions at t = 87τA and 120τA . The intensity scale represents the magnitude
of velocities, and the arrows indicate their directions. The solid lines in each panel depict the
magnetic field lines. An animation for this figure is available in the online journal.

the classical compressive viscosity coefficient (η0 = ηc). On the other hand,

Model 2 maintains κ‖ = κc but increases η0 to 10 times the value of ηc. The

purpose of this comparison is to quantitatively examine the effects of anomalous

viscosity on the excitation and evolution of slow-mode waves. Additionally, we

conduct control numerical experiments by comparing these two models under

different sets of parameters, as outlined in Table 2.

In Case A, we set κc to 0 to establish a reference condition without thermal

conduction. This allows us to analyze the influence of thermal conduction on

the wave behavior. In Case B, we reduce the initial flow amplitude by a factor

of 10 (A0 = 0.01) to investigate the effects of nonlinearity on wave evolution.

Case C examines the impact of density structure on the wave properties by

reducing a density contrast of χρ to 1. Conversely, in Case D, we explore the

effect of thermal structure by reducing a temperature contrast of χT to 1. Case E

investigates the impact of hotter loop structure on wave trapping by increasing a

temperature contrast of χT to 2. Case F excludes the viscous term in the energy

equation to assess its contribution to wave modeling.

SOLA: Wang_manuscript.tex; 6 March 2024; 2:06; p. 13



Wang et al.

Figure 3. Same as Figure 2 but for Model 2 with classical thermal conduction and a 10-times
enhanced compressive viscosity. (a) and (b): Density distributions at t = 81τA and 105τA.
(c) and (d): Corresponding velocity distributions at t = 81τA and 105τA. The intensity scale
shows the magnitude of velocities, and the arrows show their directions. An animation for this
figure is available in the online journal.

3.1. Effect of Enhanced Compressive Viscosity

We compare the simulation results of waves excited in a hot and dense coronal
loop by a velocity pulse at the right footpoint (flare source) between Cases 1 and
2, as shown in Figures 2-6. Figure 2 presents snapshots of perturbed density and
velocity in the (x,z)-plane for Case 1 at two times: t = 87τA, when the initial
wave front reaches the loop apex (Panel (a)), and t = 120τA, when the wave front
reflected from the left footpoint (remote footpoint) reaches the loop apex (Panel
(b)). Similarly, Figure 3 displays snapshots of perturbed density and velocity for
Case 2 at t = 81τA, when the initial density perturbation propagates towards the
left footpoint (Panel (a)), and t = 105τA, when the wave is reflected from the left
footpoint (Panel (b)). There are noticeable differences in wave features between
Case 2 and Case 1. In Case 2, where enhanced viscosity is considered, the initial
density perturbation is greatly elongated along the loop, without a discernible
wave front as observed in Case 1. Another evident difference is that in Case 1,
both the initial and reflected perturbations of density and velocity are in-phase.
However, in Case 2, only the initial perturbations of density and velocity are
in-phase. When the density perturbation reaches its maximum near the remote
footpoint, the velocity perturbation becomes much weaker, with inward and
outward propagating waves mixed (refer to Figure 3(d)).
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The online animations corresponding to Figures 2 and 3 are available. In
these animations, both Cases 1 and 2 exhibit similar “sloshing motions”, where
a density enhancement appears to oscillate back and forth along the loop between
the two footpoints. However, their difference can be clearly distinguished through
time-distance plots. It is known that for a fundamental standing slow-mode wave
in a loop, density perturbation is characterized with a node structure at the
loop apex and the antiphase oscillations between the two legs, while velocity
perturbations along the loop are in phase (see Yuan et al., 2015). In contrast,
the reflected propagating wave exhibits a “zigzag” pattern in the time-distance
plot (see Wang et al., 2018, 2021).

Figure 4 compares the time-distance maps of the magnetic field-parallel ve-
locity component (Top Panels), relative perturbed density (Middle Panels), and
relative perturbed temperature (Bottom Panels) for Cases 1 and 2. Based on
the zigzag feature observed in the density perturbation (see Panel (b)), we can
qualitatively identify that Case 1 exhibits a reflected propagating wave with a
weaker damping rate during the entire simulated period. Whereas the presence
of the two-leg anti-phase oscillations in Case 2 indicates the rapid formation of
a standing mode wave with a strong damping rate (comparable to observations)
after a single reflection of the initial pulse (see Panel (e)). This result confirms
the conclusions drawn from the 1D and 3D MHD simulations with similar model
parameters (Wang et al., 2018; Wang and Ofman, 2019; Ofman and Wang, 2022).

Additionally, the formation of a standing wave can be tentatively identified
from the (alternate red/blue) parallel bars pattern observed in the time-distance
map of velocity, indicating in-phase oscillation along the loop. Figure 4(a) sug-
gests the initiation of a standing wave when t > 410τA. However, the density map
still displays a zigzag pattern (more visible with increased contrast), implying
that the standing wave has not fully established. Similarly, Figure 4(d) suggests
the development of a standing wave when t > 110τA, aligning with the transition
time identified from the density pattern.

We can quantitatively determine whether or when the initially generated wave
pulse transitions from propagating into standing mode based on the phase rela-
tionship between the field-parallel velocity and density oscillations at the loop
leg or near the apex (e.g., Selwa, Murawski, and Solanki, 2005; Selwa, Ofman,
and Murawski, 2007). In the standing mode, there is a phase shift of 90◦ while
the propagating wave exhibits a phase shift of 0◦ when not considering the sign
of velocity. It should be noted that for a reflected propagating wave, the phase
shift measured from a location near the footpoints is also close to 90◦ due to
the superposition effect of inward and outward parts of the wave pulse during
its reflection (e.g., the case shown in Figure 5(a)). Thus, based on the in-phase
relationship between velocity and density oscillations as shown in Figure 5(c) for
the apex, we determine that the reflected wave in Case 1 has not yet transitioned
into a standing mode throughout the simulation time. In contrast, in Case 2, the
phase shift reaches approximately 90◦ after t = 140τA, measured at the loop leg
(s = 3/4L), indicating the establishment of a standing mode. The result is not
shown but is similar to Figure 6(a). The amplitudes of density perturbation at
the apex reduce to nearly zero after t = 140τA (Figure 6(c)). This indicates the
formation of a null point at the apex, further confirming this transition.
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To measure the physical parameters of simulated waves and compare their
evolution between Cases 1 and 2, we plot the time profiles of velocity, perturbed
density, and perturbed temperature at two locations along the loop. These lo-
cations are s=2.25 near the remote footpoint (Left Panels) and s=1.27 near the
loop apex (Right Panels) in Figures 5 and 6. We estimate the wave period (P )
by averaging the time intervals between successive peaks in the profile of each
variable, and we determine the damping time (τ) by fitting the wave peaks to an
exponentially damped function (f(t) = A0+A1t+A2exp(−t/τ)). The measured
values of P and τ are indicated on the plots and listed in Table 3. It should
be noted that in Case 1, we have excluded the first peak when fitting the time
profile of perturbations to avoid the influence of the initial flow on wave damping
measurements.

At the footpoint in Case 1, we observe that the measured periods for velocity,
density, and temperature oscillations are the same (P = 75τA). However, at the
loop apex, the periods for density and temperature oscillations are half of the
velocity period. This is because the loop apex experiences two perturbations
from the inward and reflected waves during each period of velocity oscillation.
By using the loop length and wave period, we can estimate the wave phase speed
as Vp = 2L/P , resulting in Vp=470 km s−1. This value roughly agrees with the
sound speed (Cp = 426 km s−1 with γ=1.05) for the maximum temperature
in the loop of Tm = χT T0=10.5 MK, confirming that the excited waves are
slow-mode waves.

Damping times measured between the velocity and density (temperature)
oscillations are slightly different at both the footpoint and the apex. At the
footpoint, the damping time to oscillation period ratio (often referred to as the
oscillation quality factor, Q = τ/P ) is 2.0 for V‖, while it is 1.7 (1.6) for ∆ρ
(∆T ). At the apex, the Q-factor for V‖ is 2.1, whereas Q=2.5 (3.3) for ∆ρ (∆T ).
The higher Q-factor for density and temperature perturbations at the apex is
primarily due to the shorter periods of oscillation for these variables.

In Case 2, we find that the average oscillation period for velocity, density,
and temperature perturbations at the footpoint is approximately 82τA, and the
average oscillation Q-factor is around 0.7. These values closely resemble those
observed for velocity oscillation at the apex. It is noteworthy that the amplitudes
of density and temperature oscillations at the loop apex are considerably smaller
compared to those of velocity. This characteristic is consistent with a standing
slow wave, where there is an anti-node in velocity and a node in density and
temperature perturbations at the loop apex. We also observe that the measured
oscillation periods in Case 2 are slightly longer than those in Case 1. This
difference may be attributed to the increased viscosity in Case 2 compared to
Case 1, as discussed in Wang and Ofman (2019).

3.2. Effect of Thermal Conduction

We will now analyze the effects of thermal conduction on the evolution of the
excited waves by comparing the above results with Case A, where the thermal
conduction term is disabled (κ‖=0) in simulations of Cases 1 and 2. The dashed
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Figure 4. Left panels: Time distance maps of (a) velocity parallel to the magnetic field (V‖),
(b) relative perturbed density (∆ρ/ρ(0)), and (c) relative perturbed temperature (∆T/T (0))
for a slice along the loop in Model 1. Here, ρ(0) and T (0) represent the initial density and
temperature distributions along the loop, respectively. Right panels: Same as the left panels
but for Model 2. The distance s (in units of a=70 Mm) is measured from the right footpoint
of the loop.

lines in Figures 5 and 6 illustrate the evolution of velocity, density, and tempera-
ture perturbations at the footpoint and apex of the loop in these modified cases.
We observe that, for both Cases 1A and 2A, the impact of thermal conduction on
velocity and density perturbations is negligible. This outcome is expected since
we have assumed a nearly isothermal condition by employing a polytropic index
of γ = 1.05 in these simulations. Consequently, the amplitudes of temperature
perturbations shown in Figures 5 and 6 are significantly smaller (by an order of
magnitude) compared to those of velocity and density perturbations. Therefore,
any changes in the evolution of thermal energy (related to T ) have minimal effect
on the evolution of kinetic energy (related to V ).

We also note a prominent difference in Case 1A (without thermal conduction)
compared to Case 1, which is the gradual increase in the background trend of
temperature perturbations (Panels (b) and (d) of Figure 5). This behavior can
be attributed to viscous heating, as its effect is counteracted by the cooling from
thermal conduction when included in Case 1. In Case 2A, the background tem-
perature at both the footpoint and apex increases much more rapidly compared
to Case 1A (Panels (b) and (d) of Figure 6). This discrepancy can be explained
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Figure 5. Temporal evolution of (a) the velocity component parallel to the magnetic field
(V‖ in units of the local sound speed Cp at the initial temperature T (0)) and the perturbed

density (∆ρ/ρ(0) = ρ(t)−ρ(0)
ρ(0)

), and (b) the perturbed temperature (∆T/T (0) = T (t)−T (0)
T (0)

) at

the location s=2.25 near the left footpoint of the loop in Model 1. The dotted lines indicate the
exponential decay time fit. The measured oscillation periods and decay times are marked on
the plots. The dashed lines have the same meaning as the solid lines but for the case without
thermal conduction. Panels (c) and (d) show the same as (a) and (b) but at the location s=1.27
near the loop apex. Note that in (a) and (c), the dashed curves are closely overlaid with the
solid ones.

by the fact that the viscous heating rate in Case 2A is 10 times higher than in
Case 1A, owing to the viscosity coefficient η0 being 10 times larger (see Ofman
and Wang, 2002; Wang and Ofman, 2019). Although the inclusion of thermal
conduction leads to a noticeable change in the loop’s background temperature,
its effect on the wave damping rate is weak due to our assumption of γ=1.05.
The measurements indicate that the Q-factor for temperature perturbations is
approximately 10−20% smaller in Case 1 compared to Case 1A, and a similar
effect is observed in Case 2. Finally, we observe from Figures 5(b) and 6(b) that
thermal conduction causes a slight phase shift (peaking earlier by a few τA)
in temperature perturbations for Cases 1 and 2 compared to the temperature
perturbations in Case A or the density perturbations. This behavior becomes
more pronounced under the same physical conditions when γ=5/3 (Wang and
Ofman, 2019).

3.3. Effect of Viscous Term in Energy Equation

We investigate the impact of energy transfer resulting from compressive viscos-
ity on the behavior of simulated waves in Cases 1 and 2 by deactivating the
viscous term in the energy equation (Case F). Comparing Case 1 with Case
1F, we observe no significant difference in the evolution of velocity, density,
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Figure 6. Temporal evolution of (a) the velocity component parallel to the magnetic field
(V‖/Cp) and the perturbed density (∆ρ/ρ(0)), and (b) the perturbed temperature (∆T/T (0))
at the location s=2.25 near the left footpoint for Model 2. The dotted lines indicate the
exponential decay time fit. The measured oscillation periods and decay times are marked on
the plots. The dashed lines have the same meaning as the solid lines but for the case without
thermal conduction. Panels (c) and (d) show the same as (a) and (b) but at the location s=1.27
near the loop apex. Note that in (a) and (c), the dashed curves are closely overlaid with the
solid ones.

and temperature perturbations (not shown). This suggests that the dissipation
of wave energy through viscous heating, compared to other mechanisms like
thermal conduction and wave leakage, is negligible when using the classical
viscosity coefficient. However, this effect becomes noteworthy in Case 2, where
the viscosity is substantially enhanced, as shown in the following analysis.

Figures 7(a) and (b) display the distributions of the viscous heating rate (Qv)
and the energy transfer rate (Wv) by viscous force in the energy equation at the
peak time of the footpoint driving flow, t = 75τA. Since their contributions
mainly concentrate near the right footpoint where the initial flow is injected,
we only display the bottom-right part of the simulation domain. Temporal evo-
lutions of Qv, Wv, and their sum, averaged over the entire loop region with a
density ρ ≥ 1.1, and for a small region near the center of the right footpoint, are
shown in Figures 7(c) and (d), respectively. We observe that Qv and Wv exhibit
comparable amplitudes and peak simultaneously, aligning with the flow driver
(V0(x, z = zmin, t)) at the bottom boundary.

From Panel (b) of Figure 7, we notice that Wv is positive in the central region
of the loop, leading to an increase in mechanical energy of the plasma, while it is
negative towards the loop edge, playing an opposite role. However, the average
of Wv over the entire loop is positive, indicating that the net effect of energy
transfer by the viscous force is to add mechanical energy into the loop during
the flow injection phase (Figure 7(c)). In contrast, the viscous heating in the
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Figure 7. Contribution of the viscous term to energy transfer for Case 2. Distributions of (a)
viscous heating rate (Qv) and (b) energy transfer rate by viscous force (Wv) in the bottom-right
quarter of the simulation domain at t = 75τA. The black contours indicate the loop region
with ρ ≥ 1.1. Panels (c) and (d) show the time evolution of Qv (red line), Wv (green line),
and their sum Qv + Wv (black thick line), averaged over the entire loop region with ρ ≥ 1.1
and for a point (x,z)=(0.98,1.05) near the right footpoint, respectively.

energy equation consistently increases the internal energy of the plasma and is
associated with an increase in temperature.

In Figure 8, we compare the evolution of velocity, density, and temperature at
different locations within the loop. We observe that in Case 2, the temperature
variations have a much larger amplitude compared to Case 2F, especially at
the right footpoint and the apex of the loop, indicating a strong effect of viscous
heating caused due to the enhanced viscosity. However, the differences in velocity
and density variations between Case 2 and Case 2F are negligible. This result
can be attributed to the fact that the increase of mechanical energy (primarily
kinetic energy) within the loop, resulting from the work done by the viscous
force, is much smaller than the kinetic energy directly injected from the loop’s
footpoint.

It is worth noting that the damping of wave amplitudes in Cases 2 and 2F is
predominantly related to the dissipation effect of the viscous force in the momen-
tum equation, resulting in a reduction in the wave’s kinetic energy. The limited
influence of neglecting the viscous heating term in the energy equation can be
possibly attributed to the assumption of γ=1.05, which implies an almost isother-
mal condition. In such a scenario, temperature fluctuations exhibit significantly
smaller amplitudes compared to those in velocity and density. Consequently,
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Figure 8. Comparison between Case 2 (with the viscous term) and Case 2F (without the
viscous term) in the energy equation. Panels (a)-(c): Time profiles of temperature (T ), density
(ρ), and velocity parallel to the magnetic field (V‖) at a position near the right footpoint with
the coordinate (x,z)=(0.97,1.1). Panels (d)-(f): Similar to panels (a)-(c) but at a position near
the loop apex with coordinates (x,z)=(0.0,1.7). Panels (g)-(i): Similar to panels (a)-(c) but at
a position near the left footpoint with coordinates (x,z)=(-0.96,1.1). Solid lines represent Case
2, while dashed lines represent Case 2F. Note that the dashed curve for panels in the middle
and right columns is closely overlaid with the solid curve.

pressure variations remain largely unaffected by viscous heating (which mainly
influences temperature). As a result, the velocity evolution remains relatively
unaltered since it is primarily governed by the pressure gradients for the slow
waves.

3.4. Effect of Nonlinearity

1D MHD simulations have shown that slow waves with large amplitudes can lead
to generation of higher harmonics and wave-front steepening due to nonlinearity
(e.g., Ofman and Wang, 2002; Verwichte et al., 2008), while 2D and 3D MHD
simulations suggest the additional effect of nonlinearity such as mode coupling
and wave leakage (e.g., De Moortel et al., 2004; Selwa, Ofman, and Murawski,
2007; Ofman, Wang, and Davila, 2012; Ofman and Wang, 2022). These nonlinear
effects play important roles in affecting the wave excitation and damping.
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Figure 9. Simulation results for Case B with an initial flow amplitude A0 = 0.01. Left panels
display time-distance maps of (a) field-parallel velocity, (b) relative density perturbation, and
(c) relative temperature perturbation for a slice along the loop in Case 1B. Right panels present
equivalent measurements, but for Case 2B.

We investigate the nonlinear effect regarding the wave-front evolution by com-
paring Cases 1 and 2, excited by the flow injection with the maximum amplitude
A0 = 0.1 (approximately 2 times Cs0), with a control numerical experiment with
an amplitude 10 times smaller (Case B) in this section, while the nonlinear effects
regarding mode coupling and wave leakage will be explored in Section 3.6.

Figure 9 shows the evolution of axis-parallel velocity, relative perturbed den-
sity, and temperature along the loop for Cases 1B and 2B. In Case 1B, density
perturbations along each leg synchronize rapidly, exhibiting anti-phase oscilla-
tions between the opposite legs (see Figure 9(b)). This indicates a transition
of the initial wave pulse from propagating into standing mode after several
reflections. By examining the phase relationship between velocity and density
oscillations for a location on the leg (not shown but similar to Figure 10(a)), we
observe that the phase shift becomes about a quarter-period after t = 230τA.
Meanwhile, the density oscillation at the apex shows that the amplitudes do not
decrease to nearly zero until t = 260τA (see Figure 10(c)). This indicates that
a standing mode completely forms at t ≈ 260τA, taking about 2.5P from the
launch of the flow pulse.

We then measure the oscillation period and damping time for velocity, density,
and temperature perturbations at the remote footpoint and apex of the loop
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Figure 10. Simulation results for Case 1B with A0 = 0.01. Temporal evolution of (a) the
field-parallel velocity component relative to the initial local sound speed Cp and the relative
density perturbation, and (b) the relative temperature perturbation at the location s=2.25
near the left footpoint of the loop. The dotted lines indicate the exponential decay time fit.
Panels (c) and (d) display the same parameters as in panels (a) and (b), respectively, but at
the location s=1.27 near the loop apex.

Figure 11. Simulation results for Case 2B with A0 = 0.01. The annotations for the lines in
each panel are the same as those in Figure 10.
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using the time profiles shown in Figure 10. By comparing the results for Case
1B with Case 1 (see Table 3), we find that their differences are small except for
density and temperature perturbations at the apex. The oscillation Q-factor for
velocity, density, and temperature perturbations at the footpoint in Case 1B is
only about 10% larger on average than that in Case 1. The Q-factor measured for
velocity perturbation at the loop’s apex in Case 1B is slightly larger compared
to Case 1, similar to the result for the footpoint. However, the Q-factors for
density and temperature perturbations measured at the apex are much smaller
in Case 1B, approximately half of those in Case 1, which is consistent with the
gradual formation of a density/temperature node in the loop’s apex.

The differences analyzed in the comparison between Case 1 and Case 1B sug-
gest that nonlinearity has a minor impact on wave damping but can significantly
influence the excitation time of a standing wave in coronal loops through impul-
sive heating when using classical transport coefficients. Specifically, nonlinearity
causes a delay in the standing wave formation (see the discussion in Section 4).

In Case 2B, we observe the immediate formation of a standing wave after a
single reflection of the initial propagating pulse, in agreement with Case 2. Mea-
surements of wave properties (see Table 3) indicate that the oscillation Q-factors
for velocity and density perturbation at the footpoint, and for velocity at apex
of the loop, agree well between Case 2B and Case 2. This result suggests that
the nonlinearity effect in Case 2 is completely suppressed due to the significant
enhancement of compressive viscosity.

Another noticeable feature observed is the prominent increasing trend of the
background temperature due to viscous heating in Case 2B (see Figure 9(f) and
Figures 11(c) and (d)). A quantitative comparison between Case 2B and Case
2 indicates that their maximum increases in relative amplitude (∆T/T (0)) are
indeed comparable.

3.5. Effects of Transverse Structuring in the Loop

To investigate the influence of loop transverse non-uniformity on the evolution of
excited waves in Cases 1 and 2, we conduct three control numerical experiments.
In the first control numerical experiment (Case C), we set the loop’s peak density
ratio (χρ = ρin/ρex) to 1, while maintaining its peak temperature ratio (χT =
Tin/Tex) at 1.5. In the second control numerical experiment (Case D), we set
χT = 1, but retain χρ = 1.5. In the third control numerical experiment (Case
E), we set χT = 2, while keep χρ = 1.5.

Figure 12 presents a comparison of time-distance maps for the magnetic field-
parallel velocity component (Top Panels), relative perturbed density (Middle
Panels), and relative perturbed temperature (Bottom Panels) between Cases 1C
and 2C. Similarly, Figure 13 compares the time-distance maps between Cases 1D
and 2D. In Figure 14, we compare the time evolution of these physical quantities
at the loop’s left footpoint and apex for Cases 1, 1C, and 1D. Additionally, in
Figure 15, we perform a similar comparison for Cases 2, 2C, and 2D.

The time distance maps reveal that there is almost no difference in the wave
behavior between Case 1 (2) and Case 1C (2C). From the time profiles at the
loop’s footpoint and apex, we measure the wave period, damping time, and
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Figure 12. Simulation results for Case C with the loop density contrast χρ = 1.0 and
temperature contrast χT = 1.5. Left panels: Time distance maps of (a) the field-parallel
velocity, (b) the relative density perturbation, and (c) the relative temperature perturbation
for a slice along the loop for Case 1C. Right panels: Same as the left panels but for Case 2C.

maximum amplitude for the velocity, density, and temperature perturbations
for Cases 1C and 2C. We find that the amplitudes of the excited waves in Cases
1C and 2C are slightly lower (on average by ∼26%) than in Cases 1 and 2.
The oscillation Q-factor in Case 1C is nearly the same as that in Case 1, while
the Q-factor in Case 2C is slightly smaller (on average by ∼21%) than that in
Case 2. The small decreases in wave amplitude and Q-factor could be attributed
to the nearly absent transverse density structure in Case C (as discussed in
Section 2.2), which may slightly increase the leakage effect of slow waves in the
loop.

From the comparison of the time distance maps of Cases 1D and 2D with
Cases 1 and 2, we observe some distinct differences. Over a simulation time
from t=60 to 520 τA, the wave is reflected back and forth in the loop over
five cycles in Case 1D compared to six cycles in Case 1. The damping of the
waves excited in Case 2D is noticeably slower than in Case 2. Similarly, the
formation speed of standing waves in Case 2D is also slower compared to Case
2. From the time profiles at the loop’s footpoint and apex, we measure the wave
period, damping time, and maximum amplitude for the velocity, density, and
temperature perturbations in Cases 1D and 2D. We find that the amplitudes of
the excited waves in Cases 1D are much larger (on average by a factor of 2.2)
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Figure 13. Simulation results for Case D with the loop density contrast χρ = 1.5 and
temperature contrast χT = 1.0. Left panels: Time distance maps of (a) the field-parallel
velocity, (b) the relative density perturbation, and (c) the relative temperature perturbation
for a slice along the loop for Case 1D. Right panels: Same as the left panels but for Case 2D.

than in Cases 1, while the amplitudes in Case 2D are larger on average by a
factor of 2.9 than in Cases 2.

It is evident from the time profiles, as shown in Figures 14 and 15, that
the wave periods (PD) for Cases 1D and 2D are longer than those (P ) for
Cases 1 and 2. We estimate their mean ratio, PD/P = 1.19 ± 0.05, from the
measurements of wave periods listed in Table 3. This difference can be explained
by the dependence of wave propagation speed on the plasma temperature in the
loop, Cp ∝ T 1/2 (see Wang et al., 2021). Consequently, from the equation for
wave period, P = 2L/Cp, we obtain (PD/P )the ∝ (Tm/TmD)

1/2 ≈ 1.22, where
Tm and TmD are the maximum temperature in the loop for Cases 1 and 2 and
for Cases 1D and 2D, respectively, and Tm/TmD = 1.5. Thus, the prediction by
linear theory agrees well with the simulated result.

From the measurements listed in Table 3, we find that the average Q-factor
for Case 1D is approximately 1.4±0.3, while for Case 1 it is about 2.2±0.6. This
indicates that the wave damping in Case 1D is faster than in Case 1, with a ratio
Q1D/Q1 ≈ 0.64. On the other hand, for Case 2D, the average Q-factor is around
1.00 ± 0.06, whereas for Case 2, it is about 0.73± 0.05. This suggests that the
wave damping in Case 2D is slower than in Case 2, with a ratio Q2D/Q2 ≈ 1.37.
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These distinct differences in damping characteristics between Cases 1D and
2D, when compared to Cases 1 and 2, suggest that the waves excited in Model 1
and Model 2 may be dominated by different damping mechanisms. As discussed
in Section 3.2, we have determined that thermal conduction damping is negli-
gible due to the assumption of γ = 1.05 in this study. Therefore, we consider
compressive viscosity and wave leakage as the two major damping mechanisms.
The oscillation Q-factor for slow waves, including dissipation by compressive
viscosity alone, can be derived from the dispersion relation (refer to Wang et al.,
2021):

Q =
τ

P
=

3

8π2

(

1

ǫ

)

∝
n0L

T 2
0
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where the viscous ratio, ǫ, is defined as

ǫ =
1

R
=

η0
ρ0C2

sP0
, (27)

where R is the Reynolds number, and P0 = 2L/Cs. Thus, the ratio of Q-factors
between the two cases with a temperature ratio of Tm/TmD=1.5 can be estimated
as (QD/Q)the = (Tm/TmD)

2=2.25. The measured result of Q2D/Q2 > 1 for Case
2D supports this prediction, suggesting that in the case when the compressive
viscosity coefficient is significantly enhanced, the damping of simulated waves is
dominated by viscous dissipation. The fact that Q2D/Q2 < (QD/Q)the can be
explained by the additional damping due to wave leakage. Whereas the result of
Q1D/Q1 < 1 for Case 1D, inconsistent with the prediction, suggests that wave
leakage may dominate over compressive viscosity in wave damping in the case
with no temperature enhancement within the loop and in a normal coronal con-
dition with classical viscosity coefficient. On the other hand, this result implies
that with the increase of temperature contrast from χT = 1 to 1.5, the leakage
effect should reduce (or the hotter structure facilitates the trapping of excited
waves in the loop).

To further investigate the relative influence of coronal leakage and compressive
viscosity on wave damping in a hot coronal loop, we conducted simulations in
Case E with a temperature contrast χT = 2 (not shown). We measured the wave
period and damping time using the same methodology as in the other cases and
compiled the measured parameters in Table 3.

We observed that for Case 1E, the average oscillation Q-factor is around
1.9, which is only slightly smaller than that (Q1 ≈ 2.2) of Case 1. Notably,
the average Q-factor is computed from values of Q-factor for velocity, density,
and temperature perturbations at the footpoint, as well as for velocity at the
apex. This computation excludes values of Q-factor for density and tempera-
ture perturbations at the apex due to their larger measurement uncertainties.
Drawing from the analogous discussion as presented earlier, we would anticipate
that (QE/Q)the = 0.56 for Tm/TmE = 1.5/2.0 if viscous damping were the
predominant factor. However, our simulation results reveal that Q1E/Q1 ≈ 0.9.
This suggests that the increase in viscous damping with temperature is offset
by an enhanced trapping effect (or weakened wave leakage). This, in turn, indi-
rectly indicates that the damping rate induced by wave leakage is of a similar
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Figure 14. Comparison of simulations between Case 1 (χρ=1.5 and χT=1.5), Case 1C
(chiρ=1.0 and χT=1.5), and Case 1D (χρ=1.5 and χT=1.0). Temporal evolution of (a) the
field-parallel velocity component relative to the local sound speed, (b) the relative density
perturbation, and (c) the relative temperature perturbation at the location s=2.25 near the
left footpoint of the loop. The solid curves in black, red, and green correspond to cases 1, 1C,
and 1D, respectively. The dotted lines indicate the exponential decay time fit. (d)-(f): Same
as (a)- (c) but for the case at the location s=1.27 near the loop’s apex.

magnitude to that caused by compressive viscosity. Consequently, this observa-

tion highlights the potential significance of wave leakage in comprehending the

mechanisms governing wave damping in hot coronal loops when conventional

transport coefficients are considered.

In Case 2E, we observed that the average Q-factor is approximately 0.45,

indicating a decrease compared to the value of Q2 = 0.73 for Case 2. Notably,

the observed ratio, Q2E/Q2 = 0.62, closely aligns with the predicted ratio

(QE/Q)the = 0.56. This alignment further reinforces the idea that compressive

viscosity plays a significant role as the dominant damping mechanism in Model

2, a crucial factor in comprehending the rapid excitation of standing slow-mode

waves observed in hot coronal loops.
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Table 3.: Measured parameters for simulated loop oscillations in B-parallel velocity, density, and temperature for different cases.
Items marked with ‘–’ indicates cases with no measurable oscillations. The oscillation periods (P ) and damping times (τ) are in
units of the Alfvén time (τA).
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1 75 147 2.0 75 125 1.7 75 122 1.6 76 159 2.1 38 95 2.5 38 124 3.3

1A 75 147 2.0 75 125 1.7 74 131 1.8 76 159 2.1 38 95 2.5 38 156 4.1

1B 79 163 2.1 75 162 2.2 75 126 1.7 77 174 2.3 42 51 1.2 42 63 1.5

1C 76 158 2.1 77 134 1.8 78 121 1.6 77 158 2.1 38 85 2.3 39 91 2.3

1D 92 109 1.2 93 103 1.1 92 120 1.3 93 132 1.4 45 75 1.7 45 80 1.8

1E 71 140 2.0 71 118 1.7 71 125 1.8 71 143 2.0 35 70 2.0 31 20 0.6

2 78 53 0.7 85 58 0.7 82 61 0.8 80 53 0.7 ———— ————

2A 78 53 0.7 85 58 0.7 74 79 1.1 80 53 0.7 ———— ————

2B 83 54 0.7 92 84 0.9 ———— 86 60 0.7 ———— ————

2C 81 50 0.6 82 41 0.5 76 50 0.7 83 43 0.5 ———— ————

2D 92 94 1.0 96 101 1.1 93 87 0.9 92 94 1.0 43 43 1.0 43 43 1.0

2E 71 38 0.5 79 23 0.3 73 35 0.5 74 37 0.5 ———— ————
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Figure 15. Comparison of simulations between Case 2 (χρ=1.5 and χT=1.5), Case 2C
(χρ=1.0 and χT=1.5) and Case 2D (χρ=1.5 and χT=1.0). Annotations for the lines in each
panel are the same as in Figure 14.

3.6. Effects of Wave Leakage and Mode Coupling

We analyze the nonlinear effects related to wave leakage and mode coupling
by studying the evolution of simulated waves across the loop. In Figure 16,
we present time-distance maps illustrating gas pressure perturbations (∆P =
∆(ρT )), magnetic pressure perturbations (∆B2), and the z-component of ve-
locity along a cut across the loop apex (see Figure 1(a)). The perturbations,
∆P (t) = P (t) − P (t0) and ∆B2(t) = B2(t) − B2(t0) at a given time t, are
calculated in relation to a reference time t0 = 6τA, as the initial state requires
some relaxation time to reach equilibrium. By defining the loop boundaries with
ρ=1.0 and 1.2, we observe that gas and magnetic pressure perturbations inside
the loop are in anti-phase, consistent with the characteristics of slow-mode waves.
In Case 1, which uses classical transport coefficients, the enhancement in gas
pressure, as it passes the loop apex, leads to significant variations in the loop
boundary. The expansion of the loop triggers the excitation of fast-mode waves
propagating upward. This is evidenced by enhancements in magnetic pressure
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outside the loop, which are in phase with the velocity component Vz (see Panels
(b) and (c)). This provides clear evidence for mode coupling due to nonlinearity.
We also notice that during the time 90 < t < 200, the plasma within the loop
displays the coherent up and down motions from the evolution of Vz as shown
in Panel (c), suggesting the coupling of slow waves with kink oscillations of the
loop.

Note that the induced vertical kink oscillation exhibits a period identical to
that of the density oscillation at the loop apex, or half the period of the slow-
mode waves. In contrast, the period of the fundamental kink mode is estimated
to be about 10τA (approximately P/8 of the slow waves). This indicates that
the observed kink oscillation is driven by the slow waves rather than the free
mode excited by an initial flow pulse, as predicted by Kohutova and Verwichte
(2018). It is important to mention that there is energy transfer from the slow
to kink mode due to the (slight) transverse displacement of the loop by the
centrifugal force. This is a nonlinear process, dependent on the square of the
velocity amplitude, V 2

‖ . A similar mode-coupling effect was also observed in the
3D MHD modeling of slow-mode waves excited by an impulsive onset of steady
inflow by Ofman, Wang, and Davila (2012) (see their Figures 5 and 8).

Furthermore, we have observed that the gas pressure enhancements, except
for the initial pulse, are linked to weak and slowly ascending features outside
the loop. These features are estimated to propagate at approximately 0.013 VA0

or 0.26 Cs0 (see Figure 16(a)). Upon closer examination through animations, we
have determined that these slowly propagating features result from wavefront
extensions outside the loop, which delay in phase with heights. These leaked
waves may stem from strong nonlinear interactions of flows at the footpoints.
Notably, the leaked wavefront is not associated with the initial pulse during its
propagation. The phase delay of this leaked wavefront can be explained by the
fact that these waves are nearly simultaneously generated during the reflection
at the footpoint. They propagate along field lines of varying sizes, with the wave
along the outer field line taking more time to reach the vertical cut compared
to the inner one, as their propagation speeds are close.

In Case 2, where we employ viscosity enhanced by a factor of 10, we observe
wave behaviors that are notably distinct from those in Case 1. Specifically, we
notice that only the initial gas pressure pulse causes a noticeable expansion of the
loop and excites outward propagating fast-mode waves and the loop kink motions
through mode coupling (Figures 16(d)-(f)). Additionally, there are nearly no
indications of leaked waves propagating outside the loop, associated with gas
pressure enhancements within the loop. These disparities indicate that nonlin-
ear effects in Case 2 are effectively suppressed, mainly due to the significantly
enhanced viscosity. Consequently, wave leakage in this scenario is substantially
reduced in comparison to Case 1. This finding provides direct support to the
conclusion drawn in the previous section.

In Figure 17, we compare the temporal variations of gas pressure perturbation,
magnetic pressure perturbation, and the z-component of velocity at two positions
along the vertical cut. One position is located at the center of the loop with
s=0.67, and the other is situated above the loop with s=1.0, as indicated in
Figure 16. In Case 1, we measure the average amplitudes of gas and magnetic
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pressures inside the loop during the time 75 < t < 500 to be ∆P = 0.43 and
∆B2 = −2.2×10−3, respectively. The ratio of changes in the dimensional gas and
magnetic pressures can be estimated as ∆Pg/∆Pm = β0(∆P/∆B2) = −0.96,
where the plasma β0 = 0.0049, calculated from the normalization parameters
(see Table 1). This implies that ∆Pg + ∆Pm ∼ 0 or Pg + Pm ∼ const. This
result corroborates the findings in Ofman and Wang (2022) and aligns with the
fundamental property of slow waves, where their total pressure is approximately
balanced. Similarly, in Case 2, we estimate ∆P = 0.30 and ∆B2 = −1.0× 10−3

from the averages during 75 < t < 350. This leads to ∆Pg/∆Pm = −1.4. Here,
we observe that the amplitude of gas pressure perturbations is slightly larger
than that of magnetic pressure perturbations. Given that gas pressure is the
primary restoring force in slow waves, this suggests that the coupling between
gas and magnetic pressures in Case 2 is weaker in comparison to Case 1.

Comparisons of time profiles of Vz(t) at the two positions, as depicted in Fig-
ures 17(c) and (f), reveal a small time shift of approximately 1τA between their
oscillations. Notably, this time delay also becomes evident when examining the
time profiles of ∆B2, particularly when comparing the positive peaks at s=1.0
and negative peaks at s=0.67 in Figure 17(b). Utilizing their separation distance
and time delay, we can estimate the upward propagation speed of perturbations
in Vz and ∆B2 to be approximately 0.3VA0, which closely aligns with the initial
Alfvén speed distribution above the loop top (see Figure 1(d)). Given that the
fast-mode wave speed in perpendicular propagation Vf = VA(1+γβ/2)1/2 ≈ VA

in the low-β coronal condition, this observation strongly suggests that these
rapidly upward propagating perturbations correspond to fast magnetoacoustic
waves.

3.6.1. Comparison with Observations

We have selected three longitudinal loop oscillation events that were observed
in high-temperature EUV channels using SDO/AIA. These channels include the
94 Å channel, which is sensitive to a temperature of 7 MK, and the 131 Å
channel corresponding to 11 MK. While these three events have been previously
extensively investigated to understand their trigger and damping mechanisms,
there has not been a detailed analysis of how these waves behave across the loop
structure. Our goal is to use these observed events to validate the predictions
made by our modeling approach regarding the influence of mode coupling and
wave leakage, as discussed in the previous section.

These three events include:
(1) An event on 28 December 2013 in AR NOAA 11936, which was associated

with a C3.0 flare peaking at 12:47 UT. This event had an oscillation period of
12 minutes and a decay time of 9 minutes, as measured in the 131Å channel
(Wang et al., 2015, 2018). Notably, Wang et al. (2015) discovered that a standing
slow-mode wave emerged after a single reflection of the initial pulse.

(2) An event on 7 May 2012 in AR NOAA 11476, which was associated with
a C7.4 flare peaking at 17:26 UT. This event had an oscillation period of 11
minutes and a decay time of 7 minutes in 131 Å(Kumar, Innes, and Inhester,
2013). Upon reevaluation, Krishna Prasad and Van Doorsselaere (2021) unveiled
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Figure 16. Left panels: Time-distance maps representing (a) perturbed gas pressure
(∆P = P (t) − P (6τA)), (b) perturbed magnetic pressure (∆B2 = B2(t) − B2(6τA)), and (c)
the z-component of velocity (Vz) along a vertical cut at the loop’s apex in Case 1. Right panels:
Similar to the left panels, but for Case 2. The distance s is measured from the lower end of the
cut. In each panel, solid contours delineate the loop boundaries with ρ = 1.0 and 1.2, while
dashed and dot-dashed lines indicate the locations for time profile plots shown in Figure 17. A
blue solid line in (a) indicates the measurement of upwardly propagating perturbations with
a speed of 0.013 VA.

that the initial sloshing oscillations swiftly transitioned into a standing wave after
several reflections as observed in the 94 Å channel.

(3) An event on 20 July 2013 in AR NOAA 11793, which was associated with
a C2.1 flare peaking at 3:38 UT. This event exhibited an oscillation period of 7
minutes and a decay time of 19 minutes, measured in the 94 Å channel (Kumar,
Nakariakov, and Cho, 2015).

We present snapshots of the analyzed loop structures, captured using the
131 Å channel, in the upper row of Figure 18. In each event, the observations
show that a small flare near one of the loop’s footpoints injected hot plasma
into the loop, triggering an intensity disturbance that oscillated between the
two footpoints. To generate time-distance maps, we sample data along a slender
slice (11 pixels wide) running across the loop’s apex and average the emission
over its narrow width for a sequence of images. The obtained time-distance maps
of 131 Å intensities are shown in the middle row of Figure 18. To improve the
visibility of disturbances, the intensities at each spatial position are detrended
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Figure 17. Temporal evolution of (a) perturbed gas pressure (∆P ), (b) perturbed magnetic
pressure (∆B2), and (c) the z-component of velocity (Vz) at two locations along the vertical
cut for Case 1. The black curves stand for the location at s = 0.67 inside the loop, while the
red curves for s = 1.0 above the loop’s apex. The vertical dotted lines in (b) illustrate the
time delay of perturbations ∆B2 between s = 0.67 and s = 1.0. Panels (d)-(f) depict the same
quantities as (a)-(c) but for Case 2.

and normalized using the formula (I(t) − I0(t))/I0(t), where I0(t) represents a
slowly varying trend obtained through Fourier low-pass filtering with a cutoff
frequency of approximately twice the wave period. The detrended time-distance
maps are displayed in the bottom row of Figure 18.

In all three events, there is no evidence of propagating fast magnetoacoustic
waves, which typically propagate at speeds around 1000 km s−1, nor any signs
of wave leakage, such as the sub-sonic propagating disturbances that our simu-
lations predicted. However, in the first event, slow waves seem to be associated
with the loop’s kink oscillations (see Figure 18(c)). For a more quantitative
analysis, we compare the evolution of the detrended average intensities inside
and near the loop, as shown in Figure 19. We observe clear wave signals within
the loop, while the external region exhibits only slight enhancements during the
initial peak of the waves. These observational features appear to be consistent
with the predictions of Case 2, which includes significantly enhanced viscosity.
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It is important to note that in the low-β corona, the mode coupling between
slow waves and fast-mode waves is generally weak (De Moortel et al., 2004;
Afanasyev and Nakariakov, 2015). As a result, the excited fast-mode wave due
to nonlinear coupling may be too faint to detect by SDO/AIA, as discussed
below. According to linear theory for the perpendicular propagation of fast
waves, we have the relationship ρ1/ρ0 = vz1/vf ∼ vz1/vA, where ρ1 represents
the dimensional density perturbation, vz1 is the dimensional velocity component
perpendicular to the magnetic field, and vf is the fast-mode speed that approx-
imates the local Alfvén speed, vA. From the temporal evolution of Vz for Case 1
(see Figure 17(c)), we estimate its maximum amplitude, vzm = 7× 10−4VA0 = 5
km s−1. As shown in Figure 1(d), the Alfvén speed near the loop top is ap-
proximately vA = 0.4VA0. Based on the assumption that intensity and density
perturbations roughly satisfy the relationship I1/I0 ∼ 2ρ1/ρ0, we can calculate
the relative amplitude of intensity perturbations I1/I0 ≈ 0.35%. This predicted
weak intensity wave signal falls below the detectable threshold of SDO/AIA.
However, the corresponding velocity wave signals with an amplitude of vzm=5
km s−1 might be detectable through Doppler shifts using imaging spectrometers
with very high cadence.

4. Discussion and Conclusions

Utilizing a nonlinear dissipative 2.5D MHD arcade AR model, which incorpo-
rates a hot and dense coronal loop in a gravitationally stratified atmosphere
based on observed physical parameters, we have conducted an investigation into
the impact of compressive viscosity on the excitation and evolution of reflected
propagating and standing slow-mode waves generated by impulsive heating in
solar flares. We explore wave properties (e.g., excitation time of the standing
mode, wave trapping/leakage, and dissipation) within two distinct loop models:
one employing the classical viscosity coefficient (Model 1) and the other with a
viscosity coefficient increased by a factor of ten (Model 2), as motivated by ob-
servations. Additionally, we compare these two models across various conditions
to assess the influence of other factors on wave behaviors. These factors include
thermal conduction, nonlinearity, and transverse structuring of temperature and
density within the coronal loop. Through a quantitative comparison of their
oscillation Q-factors across various scenarios as well as a comparison of wave
behaviors across the loop between our simulations and SDO/AIA observations,
we have obtained the following results:

1. In Model 1, a flow pulse initiated at the footpoint of a hot and dense loop
to simulate the flare heating effect gives rise to a reflected propagating slow wave
characterized by a relatively weaker damping rate (Q ≈ 2). Conversely, in Model
2, the same flow pulse leads to the rapid formation of a standing wave within the
loop, exhibiting a robust damping rate (Q . 1) that aligns well with observed
values. This outcome reinforces the conclusions drawn from 1D MHD modeling
conducted by Wang et al. (2018).

2. In the nearly isothermal condition (γ = 1.05) assumed in our simulations,
the influence of thermal conduction on wave behavior is negligible. The presence
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Figure 18. Analysis of wave leakage and mode coupling effects associated with longitudinal
loop oscillations observed by SDO/AIA in the 131 Å channel. (a) A snapshot of the event
on 28 December 2013, displaying longitudinal intensity oscillations in a flaring hot loop. (b)
Time-distance map of the 131 Å intensity along a narrow slice across the loop as shown in (a).
The distance is measured from the slice’s blue end. (c) Time-distance map of the detrended
and normalized intensity along the slice. The solid line band indicates a region within the loop,
whereas the dashed line band indicates a nearby region. These two regions (11-pixels wide)
are used to calculate the time profiles of the detrended intensities shown in Figure 19. (d)-(f):
The same as (a)-(c) but for the event on 7 May 2012. (g)-(i): The same as (a)-(c) but for the
event on 20 July 2013.

Figure 19. (a) Time profiles of the detrended average intensities in the two regions, as
indicated by the bands in Figure 18(c) for the 28-Dec-2013 event. A 5-pixel smoothing average
has been applied to reduce noise. The intensity curve for the area within the loop is in the
black line, whereas that for the area near the loop is in the red line. (b) Similar to (a) but for
the two regions shown in Figure 18(f) for the 7-May-2012 event. (c) Similar to (a) but for the
two regions in Figure 18(i) for the 20-Jul-2013 event.
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of thermal conduction, by means of conductive cooling, counteracts the impact
of viscous heating, which would otherwise lead to a gradual rise in the back-
ground temperature of the loop if thermal conduction were disabled. The effects
of thermal conduction on wave damping in velocity and density perturbations
are negligible, although it slightly elevates the damping rate in temperature
perturbation.

3. The exclusion of the compressive viscosity term in the energy equation
has a negligible impact on the wave behavior in Model 1, but it significantly
influences the evolution of loop temperature in Model 2 due to the enhanced
viscosity-induced strong viscous heating. However, when compared to the potent
dissipation by viscous force in the momentum equation, the impact of viscous
heating introduced in the energy equation on wave damping remains negligible.
This is probably attributed to the assumption of a near-isothermal conduction.

4. In Model 1 with normal transport coefficients, the onset of standing wave
formation within the coronal loop experiences a significant delay due to non-
linearity when subjected to a powerful driving pulse. However, in Model 2,
the initiation of standing waves remains almost unaffected by the intensity of
the driving pulse. This is because nonlinearity is effectively suppressed by an
anomalous increase in viscosity.

5. The transverse density structure within the loop has a limited impact on
enhancing the wave trapping. This is indicated by the simulation results, where a
hot loop without density contrast shows only a slight decrease in wave amplitude
and oscillation Q-factor compared to the scenario of a hot and dense loop. In
contrast, the transverse temperature structure has a significant impact on the
wave behavior, and its effects on Model 1 and Model 2 are notably distinct.
In Model 1, for the loop characterized by a lower temperature contrast, the
influence of coronal leakage on wave damping outweighs viscous damping. On
the other hand, elevating the temperature contrast between the loop and its
surroundings promotes wave trapping in the structure, potentially mitigating the
rapid escalation of viscous damping with temperature. In Model 2, i.e., with 10
times enhanced viscosity, wave leakage is comparatively insignificant in relation
to viscous damping, substantiating the dominant role of viscous damping in this
scenario and in qualitative agreement with observations.

6. The analysis of wave evolution across the loop apex reveals notable in-
dications for mode coupling (including the associated propagating fast magne-
toacoustic waves and loop kink oscillations) and the pronounced wave leakage
due to nonlinear effects in Model 1. In contrast, Model 2 exhibits substantially
weaker mode coupling and wave leakage effects. An analysis of three longitudinal
loop oscillation events observed by SDO/AIA does not provide clear evidence of
mode coupling and wave leakage. The observational features that align with the
predictions of Model 2 further support the prior finding of a substantial increase
in viscosity. However, our simulations suggest that the expected propagating
fast-mode waves generated by mode coupling in Model 1 might be too faint to
detect with AIA. Further spectroscopic examination will be necessary in the
future.

Inspired by SOHO/SUMER observations, the rapid excitation of slow-mode
standing waves in coronal loops has been investigated by Selwa, Ofman, and
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Murawski (2007) using a 2D ideal MHD model in an arcade geometry. They
highlighted the significant role of curvature effects in quick formation of standing
waves. That is attributed to the curved 2D loop geometry, unlike 1D models,
facilitating the interaction of the pulses propagating inside and outside the loop.
However, their model assumes a uniform initial gas pressure, leading to the estab-
lishment of a dense loop in equilibrium that is cooler than its surrounding corona.
This discrepancy contradicts observations that demonstrate the generation of
slow waves in hot loops heated by flares.

In this study of 2.5D MHD modeling, we have established a more realistic
hot and dense loop that is initially in equilibrium and remains stable in the
entire simulations. This model allows us to investigate more accurately how
the loop transverse structuring in density and temperature affects the wave
leakage. Moreover, 2.5D models, which have significantly lower computational
requirements compared to the 3D case, enable long-term simulations for studying
the evolution of slow waves in low-β coronal loops. This is especially useful
for conducting parametric analyses. On the other hand, a significant limitation
of 2.5D models, when compared to 3D models, lies in their simplifications of
magnetic geometry and structure. These simplifications constrain their ability
to be directly compared with real observations.

In our simulations, we have disregarded the impact of radiative losses on wave
damping. It is worth mentioning that the effect of radiative losses on damping of
slow magnetosonic waves in coronal loops was considered in a previous 3D MHD
study and found to be insignificant (Provornikova, Ofman, and Wang, 2018).
In the following, we justify our choice by comparing its characteristic timescale
with that of thermal conduction. The significance of thermal conduction in wave
dissipation can be assessed through a thermal ratio (De Moortel and Hood, 2003,
see). From Equation 16 in Wang et al. (2021), we derive

d =
P0

γτcond
=

κ0(γ − 1)(µmp)
1/2

4(γkB)3/2

(

T 2

nL

)

, (28)

where P0 = 2L/Cs, and τcond is the thermal conduction timescale. Here, κ0 =
7.8 × 10−7 is the Spitzer thermal conduction coefficient, T and n are the loop
temperature and number density, and µ = 0.6. Similarly, we can define a radi-
ation ratio to quantify the influence of radiative loss on wave damping (see De
Moortel and Hood, 2004). From Equation 37 in Wang et al. (2021), we have

r =
P0

τrad
=

C(γ − 1)(µmp)
1/2

(γkB)3/2

(

nL

T 13/6

)

, (29)

where τrad is the radiation timescale, and C = 1.86 × 10−18 is a coefficient in
the radiative loss function Λ(T ) = CT−2/3 for T ≈ 2− 10 MK (Rosner, Tucker,
and Vaiana, 1978).

For the loop model with T = 1.5T0 = 10.5 MK, n = 1.5n0 = 1.5 × 109

cm−3, L = 187 Mm, and γ = 1.05 in this study, we estimate d=0.022 and
τcond/P0=43 using Equation 28. The prediction of τcond ≫ P0 aligns with our
simulation result that thermal conduction dissipation is negligible in a near-
isothermal condition. Using Equation 29 with the same physical parameters, we
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estimate r = 9.2 × 10−4 and τrad/P0=1087. Thus we find τrad/τcond=25. This
implies that wave dissipation due to radiative loss is much weak compared to
thermal conduction in hot flare plasmas.

Recent 3D MHD simulations by Ofman and Wang (2022) suggested that
higher transverse temperature structures in coronal loops can lead to wave trap-
ping by forming a leaky waveguide inside the loop. However, their conclusion
carries significant uncertainties as it was based on a qualitative comparison with
a previous 3D model with different initial setups and physical parameters in Of-
man, Wang, and Davila (2012). Additionally, they did not address how damping
is affected by the competition between wave trapping and viscous dissipation
depending on the loop temperature contrast.

In our study, through quantitative comparisons of three cases with different
temperature contrasts (χT=1, 1.5, and 2), we demonstrate that increasing the
temperature contrast of the loop to the ambient plasma substantially enhances
wave trapping. This effect mitigates the impact of viscous damping, which is
known to depend on temperature. For the hotter loop with a temperature con-
trast of around 2, our simulations indicate that the damping rate resulting from
wave leakage is of a similar magnitude to that caused by compressive viscosity
with the classical coefficient. However, the damping of simulated oscillations is
much weaker compared to the observations in Wang et al. (2015) even though
we have taken coronal leakage into account in the 2D model. This suggests
that invoking enhanced viscosity, as proposed in the 1D model by Wang et al.
(2018), is still necessary. The enhanced compressive viscosity not only facilitate
the quick formation of standing waves but also suppress the nonlinear effect
in impulsively-generated waves with large amplitudes. This suppression occurs
by efficiently dissipating high-frequency components, as suggested by the 1D
modeling in Wang et al. (2018); Wang and Ofman (2019) and the 2D case
studied here. Alternatively, it is possible that coronal leakage in the 3D case
could be more significant than in the 2D case as demonstrated in Ofman and
Wang (2022).

Furthermore, when we compare the wave behaviors across the loop in our
simulations with observations of several slow wave events using SDO/AIA, it
becomes evidence that these observations lack clear indications of mode cou-
pling and wave leakage effects. This finding provides additional substantiation
for our conclusion regarding the significant increase in compressive viscosity in
flare-heated hot plasma, which can effectively dampen nonlinearity. It is worth
noting that a 2.5D model, including the chromosphere and considering thermal
conduction only, was employed by Fang et al. (2015). Their findings indicate no
wave leakage across the loop during the impact of slow waves on the footpoints.
This outcome contradicts the predictions made by Model 1 in our simulations.

There could be several reasons contributing to this disparity:
1. Temperature contrast: In the model of Fang et al. (2015), an initial thermal

conduction front rapidly heats the loop to a high temperature of around 10 MK,
creating a substantial temperature contrast of 4 compared to the background
corona at about 2 MK. This results in an effective waveguide that can trap the
waves efficiently. In contrast, our approach assumes a hot loop with a maximum
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temperature contrast of 1.5 and a background temperature of 7 MK, leading to
relatively more significant leakage of waves into the corona.

2. Role of thermal conduction: In Fang et al. (2015), the simulated waves
dissipate rapidly due to strong thermal conduction, resulting in weak nonlinear
effects. In our models, we assume a near-isothermal condition in which thermal
conduction plays a less significant role in wave dissipation.

3. Observational consistency: The simulation conducted by Fang et al. (2015)
indicates that the excited reflected slow waves decay out within approximately
two periods in the synthesized emissions in both the AIA 131 and 94 Å chan-
nels. This is due to the rapid cooling of the heated loop, which falls below the
temperature-sensitive ranges of the channels. This is inconsistent with actual
observations, where the waves were observed transitioning from the propagating
phase into the standing phase lasting over 6 cycles in the 94 Å channel, as
reported by Krishna Prasad and Van Doorsselaere (2021). This suggests that real
observations may not exhibit as strong thermal conduction as theory-predicted,
implying some degree of thermal conduction suppression. Enhanced viscosity, as
indicated by observations (Wang et al., 2015) and Model 2 in our study, may
be a significant factor in wave damping and excitation, as well as in mitigating
nonlinear effects .

Distinct from the SUMER-observed hot loop oscillations that are mostly
interpreted as standing waves, the AIA-observed longitudinal oscillations, char-
acterized by sloshing motions, have mostly been interpreted as the reflected
propagating slow waves. Based on the observed fact that the damping depends on
the oscillation amplitude, Nakariakov et al. (2019) suggested that the expected
enhanced dissipation of higher harmonics could be counteracted by nonlinearity,
so enabling the persistence of wave pulses with a sustained shape.

A comparison of simulated waves between Cases 1 and 1B provides evidence
that appears to corroborate this scenario. Our simulation results indicate that,
for the excited waves with small amplitudes in Case 1B, a standing wave forms
more quickly compared to Case 1, where the waves have large amplitudes. This
result suggests that nonlinear interactions become significant in propagating
wave pulses with substantial amplitudes. These interactions initiate a nonlinear
cascade (e.g., Afanasyev and Nakariakov, 2015; Nakariakov et al., 2017), which
can postpone the conversion of a propagating wave pulse into a standing wave.
This delay occurs because energy is consistently redistributed from large scales to
smaller scales. This redistribution can lead to the generation of higher harmonics,
which take time to dissipate effectively. Consequently, the process of converting
a propagating wave into a standing wave may experience slowdown, influenced
by the interplay between nonlinear cascade and dissipation effects.

The favorable conditions for the excitation of either a propagating or standing
wave may be linked to the competition between two processes: viscous dis-
sipation and nonlinear cascade. When dissipation prevails over the nonlinear
cascade, as observed in Case 2 due to the presence of anomalous compressive
viscosity, a standing wave is quickly excited. Conversely, when the nonlinear
cascade outpaces dissipation, as seen in Case 1 for waves with large amplitudes
under conditions featuring classical transport coefficients, the excitation of a
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propagating wave occurs, or its transformation into the standing mode is signifi-
cantly delayed. To address the discrepancies in the interpretations of slow-mode
oscillations observed by SUMER and AIA, particularly in identifying the wave
modes as either propagating or standing, a comprehensive statistic study of flare-
induced slow wave events is necessary. Such an analysis could utilize simultaneous
imaging and spectroscopic observations, which could be made possible by future
missions like the Multi-Slit Solar Explorer (MUSE) (De Pontieu et al., 2020) and
the EUV High-Throughput Spectroscopic Telescope (Solar-C/EUVST) (Shimizu
et al., 2020). Further research, combined with future observational data, will
continue to enhance our understanding of the intricate interplay between wave
phenomena and nonlinear processes. This will shed light on their implications
for coronal heating processes and further advance the field of coronal seismology.
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Linker, J.A., Mikić, Z., Biesecker, D.A., Forsyth, R.J., Gibson, S.E., Lazarus, A.J., Lecinski,
A., Riley, P., Szabo, A., Thompson, B.J.: 1999, Magnetohydrodynamic modeling of the solar
corona during Whole Sun Month. J. Geophys. Res. 104, 9809. DOI. ADS.

Mandal, S., Yuan, D., Fang, X., Banerjee, D., Pant, V., Van Doorsselaere, T.: 2016, Reflec-
tion of Propagating Slow Magneto-acoustic Waves in Hot Coronal Loops: Multi-instrument
Observations and Numerical Modeling. Astrophys. J. 828, 72. DOI. ADS.

Mariska, J.T.: 2005, Observations of Solar Flare Doppler Shift Oscillations with the Bragg
Crystal Spectrometer on Yohkoh. Astrophys. J. Lett. 620, L67. DOI. ADS.

Mariska, J.T.: 2006, Characteristics of Solar Flare Doppler-Shift Oscillations Observed with
the Bragg Crystal Spectrometer on Yohkoh. Astrophys. J. 639, 484. DOI. ADS.

Mendoza-Briceño, C.A., Erdélyi, R., Sigalotti, L.D.G.: 2004, The Effects of Stratification on
Oscillating Coronal Loops. Astrophys. J. 605, 493. DOI. ADS.

Nakariakov, V.M., Kolotkov, D.Y.: 2020, Magnetohydrodynamic Waves in the Solar Corona.
Annu. Rev. Astron. Astrophys. 58, 441. DOI. ADS.

Nakariakov, V.M., Verwichte, E.: 2005, Coronal Waves and Oscillations. Living Rev. Solar
Phys. 2, 3. DOI. ADS.

Nakariakov, V.M., Afanasyev, A.N., Kumar, S., Moon, Y.-J.: 2017, Effect of Local Thermal
Equilibrium Misbalance on Long-wavelength Slow Magnetoacoustic Waves. Astrophys. J.
849, 62. DOI. ADS.

Nakariakov, V.M., Kosak, M.K., Kolotkov, D.Y., Anfinogentov, S.A., Kumar, P., Moon, Y.-J.:
2019, Properties of Slow Magnetoacoustic Oscillations of Solar Coronal Loops by Multi-
instrumental Observations. Astrophys. J. Lett. 874, L1. DOI. ADS.
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Taroyan, Y., Erdélyi, R., Wang, T.J., Bradshaw, S.J.: 2007, Forward Modeling of Hot Loop
Oscillations Observed by SUMER and SXT. Astrophys. J. Lett. 659, L173. DOI. ADS.

Verwichte, E., Haynes, M., Arber, T.D., Brady, C.S.: 2008, Damping of Slow MHD Coronal
Loop Oscillations by Shocks. Astrophys. J. 685, 1286. DOI. ADS.

Wang, T.J.: 2011, Standing Slow-Mode Waves in Hot Coronal Loops: Observations, Modeling,
and Coronal Seismology. Space Sci. Rev. 158, 397. DOI. ADS.

Wang, T.J.: 2016, Waves in Solar Coronal Loops. Washington DC American Geophysical
Union Geophysical Monograph Series 216, 395. DOI. ADS.

SOLA: Wang_manuscript.tex; 6 March 2024; 2:06; p. 43

https://doi.org/10.1086/345548
https://ui.adsabs.harvard.edu/abs/2002ApJ...580L..85O
https://doi.org/10.3847/1538-4357/ac4090
https://ui.adsabs.harvard.edu/abs/2022ApJ...926...64O
https://doi.org/10.1088/0004-637X/754/2/111
https://ui.adsabs.harvard.edu/abs/2012ApJ...754..111O
https://doi.org/10.1051/0004-6361:20077130
https://ui.adsabs.harvard.edu/abs/2007A&A...467..311O
https://doi.org/10.1051/0004-6361:200809377
https://ui.adsabs.harvard.edu/abs/2009A&A...495..313O
https://ui.adsabs.harvard.edu/abs/1993A&A...273..647O
https://doi.org/10.1007/s11207-006-0123-4
https://ui.adsabs.harvard.edu/abs/2006SoPh..236..127P
https://doi.org/10.1007/s11207-021-01764-x
https://ui.adsabs.harvard.edu/abs/2021SoPh..296...20P
https://doi.org/10.1007/s11207-021-01940-z
https://ui.adsabs.harvard.edu/abs/2022SoPh..297....5P
https://doi.org/10.1016/j.asr.2017.07.042
https://ui.adsabs.harvard.edu/abs/2018AdSpR..61..645P
https://doi.org/10.3847/2041-8205/826/2/L20
https://ui.adsabs.harvard.edu/abs/2016ApJ...826L..20R
https://doi.org/10.3847/1538-4357/ab4270
https://ui.adsabs.harvard.edu/abs/2019ApJ...884..131R
https://doi.org/10.1086/155949
https://ui.adsabs.harvard.edu/abs/1978ApJ...220..643R
https://doi.org/10.1051/0004-6361/201321175
https://ui.adsabs.harvard.edu/abs/2013A&A...553A..23R
https://doi.org/10.5194/angeo-27-3899-2009
https://ui.adsabs.harvard.edu/abs/2009AnGeo..27.3899S
https://doi.org/10.1051/0004-6361:20042319
https://ui.adsabs.harvard.edu/abs/2005A&A...436..701S
https://doi.org/10.1086/522602
https://ui.adsabs.harvard.edu/abs/2007ApJ...668L..83S
https://doi.org/10.1117/12.2560887
https://ui.adsabs.harvard.edu/abs/2020SPIE11444E..0NS
https://doi.org/10.1103/PhysRev.89.977
https://ui.adsabs.harvard.edu/abs/1953PhRv...89..977S
https://doi.org/10.1051/0004-6361:20052794
https://ui.adsabs.harvard.edu/abs/2005A&A...438..713T
https://doi.org/10.1086/517521
https://ui.adsabs.harvard.edu/abs/2007ApJ...659L.173T
https://doi.org/10.1086/591077
https://ui.adsabs.harvard.edu/abs/2008ApJ...685.1286V
https://doi.org/10.1007/s11214-010-9716-1
https://ui.adsabs.harvard.edu/abs/2011SSRv..158..397W
https://doi.org/10.1002/9781119055006.ch23
https://ui.adsabs.harvard.edu/abs/2016GMS...216..395W


Wang et al.

Wang, T.J., Ofman, L.: 2019, Determination of Transport Coefficients by Coronal Seismology
of Flare-induced Slow-mode Waves: Numerical Parametric Study of a 1D Loop Model.
Astrophys. J. 886, 2. DOI. ADS.

Wang, T.J., Innes, D.E., Qiu, J.: 2007, Determination of the Coronal Magnetic Field from
Hot-Loop Oscillations Observed by SUMER and SXT. Astrophys. J. 656, 598. DOI. ADS.

Wang, T.J., Ofman, L., Davila, J.M.: 2013, Three-dimensional Magnetohydrodynamic Model-
ing of Propagating Disturbances in Fan-like Coronal Loops. Astrophys. J. Lett. 775, L23.
DOI. ADS.

Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: 2002, Doppler Shift Os-
cillations of Hot Solar Coronal Plasma Seen by SUMER: A Signature of Loop Oscillations?
Astrophys. J. Lett. 574, L101. DOI. ADS.

Wang, T.J., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E., Kliem, B.: 2003a, Hot coro-
nal loop oscillations observed with SUMER: Examples and statistics. Astron. Astrophys.
406, 1105. DOI. ADS.

Wang, T.J., Solanki, S.K., Innes, D.E., Curdt, W., Marsch, E.: 2003b, Slow-mode standing
waves observed by SUMER in hot coronal loops. Astron. Astrophys. 402, L17. DOI. ADS.

Wang, T.J., Solanki, S.K., Innes, D.E., Curdt, W.: 2005, Initiation of hot coronal loop
oscillations: Spectral features. Astron. Astrophys. 435, 753. DOI. ADS.

Wang, T.J., Ofman, L., Sun, X., Provornikova, E., Davila, J.M.: 2015, Evidence of Thermal
Conduction Suppression in a Solar Flaring Loop by Coronal Seismology of Slow-mode
Waves. Astrophys. J. Lett. 811, L13. DOI. ADS.

Wang, T.J., Ofman, L., Sun, X., Solanki, S.K., Davila, J.M.: 2018, Effect of Transport Co-
efficients on Excitation of Flare-induced Standing Slow-mode Waves in Coronal Loops.
Astrophys. J. 860, 107. DOI. ADS.

Wang, T.J., Ofman, L., Yuan, D., Reale, F., Kolotkov, D.Y., Srivastava, A.K.: 2021, Slow-Mode
Magnetoacoustic Waves in Coronal Loops. Space Sci. Rev. 217, 34. DOI. ADS.

Xia, F., Wang, T.J., Su, Y., Zhao, J., Zhang, Q., Veronig, A.M., Gan, W.: 2022, Plasma
Heating and Nanoflare Caused by Slow-mode Wave in a Coronal Loop. Astrophys. J. Lett.
936, L13. DOI. ADS.

Yuan, D., Van Doorsselaere, T., Banerjee, D., Antolin, P.: 2015, Forward Modeling of Standing
Slow Modes in Flaring Coronal Loops. Astrophys. J. 807, 98. DOI. ADS.

SOLA: Wang_manuscript.tex; 6 March 2024; 2:06; p. 44

https://doi.org/10.3847/1538-4357/ab478f
https://ui.adsabs.harvard.edu/abs/2019ApJ...886....2W
https://doi.org/10.1086/510424
https://ui.adsabs.harvard.edu/abs/2007ApJ...656..598W
https://doi.org/10.1088/2041-8205/775/1/L23
https://ui.adsabs.harvard.edu/abs/2013ApJ...775L..23W
https://doi.org/10.1086/342189
https://ui.adsabs.harvard.edu/abs/2002ApJ...574L.101W
https://doi.org/10.1051/0004-6361:20030858
https://ui.adsabs.harvard.edu/abs/2003A&A...406.1105W
https://doi.org/10.1051/0004-6361:20030448
https://ui.adsabs.harvard.edu/abs/2003A&A...402L..17W
https://doi.org/10.1051/0004-6361:20052680
https://ui.adsabs.harvard.edu/abs/2005A&A...435..753W
https://doi.org/10.1088/2041-8205/811/1/L13
https://ui.adsabs.harvard.edu/abs/2015ApJ...811L..13W
https://doi.org/10.3847/1538-4357/aac38a
https://ui.adsabs.harvard.edu/abs/2018ApJ...860..107W
https://doi.org/10.1007/s11214-021-00811-0
https://ui.adsabs.harvard.edu/abs/2021SSRv..217...34W
https://doi.org/10.3847/2041-8213/ac8afe
https://ui.adsabs.harvard.edu/abs/2022ApJ...936L..13X
https://doi.org/10.1088/0004-637X/807/1/98
https://ui.adsabs.harvard.edu/abs/2015ApJ...807...98Y

	Introduction
	2.5D Hot Arcade Loop Modeling
	MHD Model
	Initial Setup 
	Boundary Conditions

	Results
	Effect of Enhanced Compressive Viscosity
	Effect of Thermal Conduction
	Effect of Viscous Term in Energy Equation
	Effect of Nonlinearity
	Effects of Transverse Structuring in the Loop
	Effects of Wave Leakage and Mode Coupling

	Discussion and Conclusions

